EROSI PANTAI PADA ZONA STABIL SEBAGAI DAMPAK REKLAMASI LOKAL DI PERAIRAN ANYER SELAT SUNDA, BANTEN

Delyuzar llahude
Pusat Penelitian dan Pengembangan Geologi Kelautan

JI. Dr. Junjunan 236 Bandung

SARI

Secara geografis lokasi daerah penelitian terletak di perairan Selat Sunda, Provinsi Banten yang dikenal sebagai kawasan wisata. Proses erosi dan sedimentasi pada umumnya terjadi di sepanjang garis pantai Anyer dan sekitarnya. Mekanisme proses erosi tersebut dipicu oleh pola gerak arus sejajar pantai yang tidak beraturan sebagai efek difraksi gelombang akibat pembuatan sistem proteksi di beberapa tempat di Teluk Anyer. Proses erosi tersebut timbul pada saat gelombang pasang dan mencapai puncak maksimum pada musim barat yang terjadi pada bulan Desember hingga Februari.
Kata kunci : kawasan wisata, arus sejajar pantai, pantai erosi

ABSTRACT

The studjed area is geographically located on the Sunda Strait, Banten Province, known as touris area. The erosion and sedimentation processes occur along Anyer longshore area. The mechanism of erosion is strongly caused by the irregular pattern of longshore current and the wave difraction of which they are affected by the breakwater system in the Anyer coast. The erosion process occurs because of the tidal wave and the maximum height is in the west monsoon in December until Februari.
Key words : tourist area, longshore current, erosion coast

PENDAHULUAN

Latar Belakang

Daerah penelitian merupakan salah satu lokasi di tepian perairan Selat Sunda dengan sektor pariwisata yang cukup berkembang, terutama di daerah perairan Teluk Anyer dan sekitarnya. Secara geografis daerah ini termasuk kedalam Kabupaten Serang, Propinsi Banten dengan koordinat $105^{\circ} 50^{\prime} 00^{\prime \prime}$ - $106^{\circ} 20^{\prime} 00^{\prime \prime} \mathrm{BT}$ dan $5^{\circ} 50^{\prime} 00^{\prime \prime}-6^{\circ} 20^{\prime} 00^{\prime \prime}$ LS (Gambar 1).

Pesisir pantai di kawasan ini telah lama dikenal sebagai salah satu daerah tujuan wisata, di samping itu juga daerah ini merupakan kawasan industri. Pengaruh parameter-parameter oseanografi dan iklim saling berkaitan, terutama pengaruh iklim global terhadap kemunculan energi gelombang yang sering memicu arus, sehingga berdampak terhadap lereng pantai di kawasan Teluk Anyer dan sekitarnya.
Dari hasil pengamatan di lapangan diketahui telah terjadi perubahan lingkungan pantai secara signifikan, terutama efek erosi pantai di beberapa tempat di pesisir pantai (Mustafa dkk., 2004). Kapan abrasi pantai dimulai tidak diketahui, tetapi
sejak tahun 1989 daerah ini telah mengalami abrasi (Sukardjono dkk, 1989).

Sejalan dengan perkembangan sektor wisata di pesisir pantai Teluk Anyer, keberadaan beberapa hotel berbintang dekat bibir pantai juga berkembang. Di bagian selatan daerah penelitian yaitu daerah Teluk Anyer, secara umum telah mengalami abrasi (Mustafa dkk, 2004).

Gambar 1. Lokasi daerah penelitian.

Reklamasi pantai di kawasan wisata diperkirakan telah memicu laju erosi di bagian selatan daerah penelitian ini. Sementara itu, keberadaan tanggul reklamasi tersebut di samping mengurangi keindahan panorama pantai, juga menimbulkan difraksi gelombang. Energi difraksi gelombang ini cenderung mengerosi lereng pantai di sekitarnya, sehingga mengurangi lahan produktif bagi masyarakat setempat maupun sarana jalan di daerah Cikoneng. Kondisi pantai Cikoneng ini dapat disebandingkan dengan keadaannya pada saat penelitian tahun 1989 yang telah mengalami abrasi, sehingga garis pantai di kawasan tersebut cenderung mundur (Sukarjono dkk, 1989). Penyebab utama abrasi di kawasan tersebut belum diketahui, karena belum dilakukan kajian secara komprehensif.

Maksud penelitian inî adalah untuk mengetahui penyebab utama abrasi yang cukup signifikan di daerah Teluk Anyer dan sekitarnya, yang mengakibatkan daerah tersebut cenderung tererosi. Oleh karena itu, pendekatan secara empiris dilakukan pada beberapa lokasi di sepanjang pantai wisata yang diperkirakan menjadi pemicu terjadinya erosj musiman.

Tujuan penelitian ini adalah untuk memberi pemahaman kepada masyarakat setempat tentang bahaya pendirian struktur bangunan secara tidak teratur di tepi pantai, khususnya bagi pengguna lahan di sepanjang pesisir pantai perairan Teluk Anyer dan sekitarnya. Dari pendekatan dinamika parameter oseanografi maka dapat diantisipasi daerah yang berpotensi erosi dan sedimentasi.

METODE

Metode penelitian adalah prediksi parameter oseanografi dengan menggunakan data frekuensi angin permukaan selama lima tahun secara kontinu. Prosedur yang dilakukan antara lain memonitor energi gelombang pada bulan Agustus yang diamati di beberapa lokasi secara acak yaitu di pantai Cikoneng, Teluk Anyer, dermaga Krakatau Steel, hingga ke PLTU Suralaya. Pengumpulan data parameter oseanografi tersebut bertujuan untuk mengetahui seberapa besar pengaruh energi gelombang untuk kedua musim (musim timur dan barat) di daerah Teluk Anyer sampai ke pantai PLTU Suralaya dengan pendekatan metode kurva baku yang diformulasikan oleh ljima dan Tang (1967). Metode pendekatan kurva tersebut menggunakan parameter data angin dari Stasiun Meteorologi

Serang-Banten yang dipublikasikan oleh Badan Meteorologi dan Geofisika Jakarta dari tahun 1998 sampai dengan tahun 2002.

Analisis kualitatif terhadap jumlah perpindahan sedimen di sepanjang pantai (longshore drift) dilakukan melalui analisis energi gelombang perairan dangkal di sepanjang pantai. Untuk mengetahui nilai kecepatan pengendapan sedimen persatuan waktu, dilakukan analisis kuantitatif dari prediksi tinggi dan periode gelombang pada dua lokasi dengan menggunakan persamaan linier empiris Komar dan Inman dalam Bijker (1988). Bersamaan dengan itu dilakukan juga pengamatan arus dan pasang-surut laut untuk mengetahui pola arus dan karakteristik tipe pasang-surut di perairan tersebut dengan sistem pengamatan selama lima belas hari. Data pasangsurut ini kemudian diolah dengan menggunakan metode harmonis Admiralty untuk menentukan tipe pasang-surut perairan Selat Sunda.

HASIL PENELITIAN DAN PEMBAHASAN

Litologi dan Kondisi Lingkungan Pantai

Litologi batuan utama penyusun pantai adalah endapan aluvium disertai sebagian agregat produk gunung api yang bersifat lepas yang menutupi seluruh daerah penelitian, sehingga proses abrasi gelombang di sepanjang pantai ini hampir berdampak meluas di lingkungan sekitarnya (Mustafa dkk., 2004). Secara umum daerah pesisir pantai bertebing landai sampai terjal dengan sudut kemiringan lereng antara 30° sampai 45°. Pada daerah yang telah mengalami abrasi dan daerah kawasan industri sudut kemiringan lereng antara 45° sampai 90°. Beberapa daerah pesisir pantai mengalami sedimentasi secara musiman, terutama di pesisir pantai bagian tengah Teluk Anyer.

Perubahan lingkungan pantai akibat pembuatan tanggul dan sistem proteksi pantai telah mengundang risiko erosi di luar lokasi wilayah wisata tersebut (Gambar 2). Demikian juga kerusakan akibat pembuatan dinding pantai (sea wal/) di bagian selatan Cikoneng, telah memicu proses erosi pantai di daerah ini, sampai menoreh badan jalan di daerah tersebut (Gambar 3), (Sukardjono dkk., 1989).

Data dari tahun 1989 tersebut menunjukkan bahwa proses abrasi telah berlangsung lama dengan intensitas relatif cukup kuat yang berpengaruh terhadap dinding pantai maupun lahan produktif yang berada di bagian selatan daerah Cikoneng dan

Geo-Environment

Teluk Anyer. Berbeda dengan di bagian utara daerah penelitian, lingkungan pesisir pantai telah berubah menjadi kawasan industri yang dijumpai di daerah Teluk Pangabuan Kecil hingga ke PLTU Suralaya (Gambar 4).

Hasil penelitian menunjukkan bahwa potensi abrasi lebih dominan terjadi di bagian selatan daerah penelitian dengan bukti-bukti yang sudah terpantau sejak tahun 1989, yaitu pada lokasi fondasi mercusuar lama dengan sisa terumbu karang yang telah mengalami pengikisan gelombang (Gambar 5). Kemunduran garis pantai di lokasi Cikoneng tersebut ditunjukkan oleh jejak fondasi mercusuar lama yang mengalami abrasi (Gambar 6), dan kehilangan lahan perkebunan di pesisir pantai (Gambar 7) yang pada saat ini telah mengalami reklamasi (Gambar 8). Keberadaan tanggul buatan (reklamasi) yang menjorok ke laut pada daerah kawasan wisata (Gambar 7 dan 9), berdampak terhadap pola arus sejajar pantai, sehingga terjadi perubahan arah arus yang semakin tidak beraturan akibat difraksi gelombang. Karakteristik arus ini cenderung memicu erosi pada bibir pantai di sekitarnya. Lajuêrosi pantai ini berbeda-beda, hal ini sangat bergantung pada litologi pesisir pantai dan intensitas maupun frekuensi gelombang yang menuju pantai.

Gambar 2. Salah satu pantai di pesisir Teluk Anyer pada lokasi antara titik 3 dan 4 yang mengalami abrasi.

Gambar 3. Kondisi badan jalan yang mengalami torehan gelombang. Lokasi di pesisir bagian selatan Cikoneng (Sukardjono dkk, 1989).

Gambar 4. Salah satu pantai yang telah berubah menjadi kawasan Industri di bagian utara daerah penelitian, yaitu bagian utara Pelabuhan Cigading pada lokasi antara titik 7 dan 8.

Gambar 5. Kondisi fondasi mercusuar lama sebelum mengalami abrasi (Sukarjono dik.. 1989). Lokasi bagian utara zoná reklamasi.

Gambar 6. Kondisi Yondasi mercusuar lama pada saat penelitian tahun 2004 dan sisa terumbu karang yang mengalami abrasi di lokasi sama dengan Gambar 5.

Gambar 7. Kondisi pantai pada penelitian tahun 2004 yang telah direklamasi. Lokasi bagian selatan fondasi mercusuar lama, gambar dilihat dari atas mercusuar baru di daerah Cikoneng pada waktuair surut.

Gambar 8. Kondisi pantai sebelum direklamasi (Sukarjono dkk, 1989). Lokasi bagian utara fondasi mercusuar lama, daerah Cikoneng.

Gambar 9. Kondisi pantai pada saat peneilitian tahun 2004 setelah mengalami reklamasi, dilihat dari alas mercusuar baru pada waktu sutut. Lokasi bagian utara fondasi mercusuar lama Cikoneng.

Fenomena Arus Pasang- Surut

Fenomena arus pasang-surut ditimbulkan oleh fluktuasi permukaan air laut akibat gaya tarik bulan dan matahari. Pasang-surut di perairan Selat Sunda adalah tipe campuran ganda (mixed predominantly semi diurnal), dalam arti terjadi dua kali pasang dalam sehari (Mustafa dkk., 2004). Perubahan fluktuasi permukaan air laut tersebut diikuti oleh gerakan massa air, baik secara vertikal maupun horizontal dengan kecepatan arus pada umumnya rata-rata $0,38 \mathrm{~m} /$ detik pada saat pasang dan 0,65 $\mathrm{m} /$ detik pada saat surut. Gerakan massa air tersebut dapat dipantau dari pola arus melalui pengamatan tiga pelampung pada kedalaman masing-masing 2,5 dan 20 meter di lepas pantai Pelabuhan Cigading sampai ke Teluk Anyer.
Saat penelitian pada bulan Agustus - September (musim timur) arah angin pada umumnya dari arah utara dan timur laut dengan komponen angin berarah sejajar dengan pergerakan arus permukaan di Selat Sunda ke arah barat daya (Gambar 12). Arah arus tersebut cenderung ke barat daya baik pada saat air surut maupun pada waktu air pasang yang berlangsung dua kali dalam sehari. Sesuai dengan mekanisme timbulnya arus pasang-surut, pengaruh angin ini mampu menggerakan arus pasang-surut
disertai perubahan elevasi permukaan air laut akibat gaya tarik bulan dan matahari. Dengan demikian di Selat Sunda pada awal pergantian musim timur ke musim barat, diperkirakan sering terjadi perlawanan arah arus pasang-surut dengan arah angin permukaan. Kondisi perlawanan arah ini sering membangkitkan gelombang cukup tinggi secara musiman yang dikenal dengan gelombang berdiri (standing waves). Gelombang yang tinggi ini sering terjadi pada bulan Oktober sampai Desember. Dampak fenomena alam ini sering kali melanda perairan Selat Sunda, terutama terhadap aktivitas pelayaran kapal-kapal penyeberangan (ferry) dari pelabuhan Merak ke pelabuhan Bakaheuni.

Zona Erosi dan Pergerakan Sedimen

Aktivitas gelombang musiman secara periodik pada setiap akhir tahun tersebut cukup memicu erosi pada zona wisata Teluk Anyer, pemukiman, sarana pelabuhan, dan kawasan industri di tepian pantai Kabupaten Serang.

Hasil kajian pola arus permukaan dan energi gelombang di perairan Anyer berdasarkan diagram wind rose dari Stasiun Meteorologi Serang memberikan arah penafsiran bahwa proses erosi gelombang tersebut hanya terjadi pada musim barat saja, dari bulan Desember sampai Januari (Tabel 1). Selain itu, pada musim timur tidak terjadi erosi karena secara geografis daerah penelitian menghadap ke barat, sehingga tidak dipengaruhi oleh energi gelombang dari arah timur dan tenggara yang membangkitkan arus sejajar pantai.

Pendekatan statistik analisis data angin (Tabel 1) menunjukkan bahwa pantai Anyer dan sekitarnya secara dominan dipengaruhi oleh tiga arah komponen angin utama, yaitu dari barat (W), utara (N), dan barat laut (NW), yang berperan membangkitkan energi gelombang dan arus di daerah pesisir barat pantai Anyer (Gambar 10). Oleh sebab itu, menjelang musim barat perairan ini sangat rentan terhadap abrasi pantai.

Untuk mengetahui proses erosi dan pergerakan sedimen, maka dilakukan pendekatan dengan metode analisis kuantitatif dan kualitatif di sepanjang pantai yang mewakili kedua musim (musim barat dan timur) dengan menggunakan persamaan linier empiris Komar dan Inman dalam Bijker (1988) dan Formulasi ljima dan Tang (1967). Di samping itu, dari data sekunder angin permukaan berkecepatan di atas 10 knot dari Stasiun Meteorologi Serang Banten (Tabel 1) dilakukan analisis parameter klimatologi.

Tabel 1. Persentase Arah dan Kecepatan Angin di atas 10 Knot Perairan Serang - Banten dan Sekitarnya Menurut Stasiun Meteorologi Serang Banten, 1998-2002, (Anonim, 2002)

Arah Angin Dominan	$11-16$	$17-21$	$22-27$	Jumlah
Komponen	$\%$	$\%$	$\%$	$\%$
Utara (N)	4,93	0,11	-	5,04
Timur Laut (NE)	0,33	0	-	0,55
Timur (E)	2,63	0,27	-	2,9
Selatan (S)	0,99	0,05	-	1,04
Barat Daya (SW)	0,38	0,16	-	0,55
Barat (W)	15,56	2,58	0,44	18,58
Barat Laut (NW)	0,6	0	-	0,6

Kemudian analisis energi gelombang dapat dilakukan dengan beberapa cara, baik acak maupun simultan, dan kontinu. Dalam penelitian ini dilakukan pengambilan data dengan metode perekaman langsung dan metode prediksi tinggi gelombang. Berhubung kondisi perairan pada saat penelitian ini dalam keadaan tenang, maka metode perekaman langsung tidak dilakukan. Untuk mendapatkan nilai yang mendekati energi gelombang sesungguhnya, maka dilakukan prediksí tinggi gelombang dengan menganalisis data angin pembangkit gelombang selama 5 tahun.

Data parameter gelombang yang diperoleh tersebut hanya bersifat pendekatan empiris bukan merupakan nilai mutlak. Hal ini sangat bergantung pada parameter klimatologi di daerah setempat yang sangat dinamis, dan pada setiap saat dapat berubah secara signifikan. Perubahan signifikan akan berpengaruh terhadap nilai parameter gelombang yang terukur. Oleh sebab itu, data gelombang yang disubstitusikan ke dalam persamaan linier empiris perlu disesuaikan dengan kondisi geografis daerah penelitian, serta nilai kecepatan angin di atas 10 knot selama 5 tahun. Dalam penelitian ini diambil dua belas titik pendugaan yang tidak terganggu oleh efek refraksi gelombang, dan digambarkan dalam kurva energi flux (Gambar 11). Data gelombang hasil prediksi tersebut dapat mewakili lokasi atau titik pemantauan sepanjang pesisir pantai Anyer dan sekitarnya. Nilai akhir prediksi tinggi gelombang tersebut dikonversikan dalam bentuk besaran energi flux dengan menggunakan sistem satuan Newtonmeter/detik yang dapat dilihat dalam Tabel 2 di bawah ini.

Hasil analisis data angin yang membangkitkan energi gelombang menunjukkan bahwa lingkungan pantai Teluk Anyer dan sekitarnya secara dominan dipicu oleh energi gelombang dengan frekuensi angin dari

Gambar 10. Diagram windrose hasil analisis dari data Tabel 1. Stasiun Meteorologi Serang Banten.
barat dan barat laut. Mekanisme terjadinya erosi di daerah pesisir pantai Anyer dan sekitarnya berlangsung secara periodik menjelang air pasang maksimum (top limit spring), dan terjadi dua kali dalam sehari. Dengan pendekatan kurva energi flux tersebut, arah pergerakan sedimen akibat arus sejajar pantai ditunjukkan dalam peta analisis energi flux gelombang dan arus sejajar pantai (Gambar 12). Pendekatan formulasi ini memberi gambaran bahwa secara kumulatif arah arus yang bermuatan sedimen yang bergerak secara alamiah ke arah utara tersebut, lebih dominan dibangkitkan oleh energi gelombang pada musim barat.

Akan tetapi dengan adanya gangguan reklamasi pantaidi beberapa lokasi, seperti yang terpantau saat penelitian, maka arus sejajar pantai yang tadinya bergerak secara alamiah ke arah utara tersebut, diperkirakan telah mengalami gangguan oleh sistem proteksi pantai di kawasan tersebut. Arus ini cenderung mengikis lereng pantai di beberapa lokasi yang berada di sekitar daerah wisata terutama di bagian utaranya (Gambar 12 titik 3 dan 4). Di daerah pantai yang telah mengalami reklamasi, orbital gelombang tersebut mengalami difraksi pada sistem proteksi pantai, dan cenderung mengerosi tebing pantai seperti yang terpantau di daerah Teluk Anyer dan Cikoneng (Gambar 2 dan 6).

Dari pendekatan formulasi tersebut, nilai energi flux terendah sebesar $1 ; 67 \mathrm{~N}-\mathrm{m} /$ det, terdapat di lokasi titik pendugaan 8 , yaitu merupakan daerah sedimentasi. sementara terbesar mencapai nilai

Gambar 11. Kurva Flux gelombang sepanjang pantai daerah perairan Anyer dan sekitarnya.

Tabel 2. Nilai Energi fiux Gelombang
Daerah Pesisir Pantal
Perairan Anyer Selat Sunda

No. Titik	Nilai Energi Flux (N-midet)
1	29,3898
2	69,8292
3	55,6972
4	55,5456
5	63,3923
6	60,0683
7	55,6574
8	1,6758
9	32,2586
10	10,8820
11	16,8551
12	15,6064

sebesar 69,82 $\mathrm{N}-\mathrm{m} /$ det, terdapat di titik pendugaan 2 yang merupakan daerah abrasi terbesar (Gambar 12). Suatu bukti adanya pengaruh reklamasi pantai pada zona ini ditunjukkan oleh titik tinjau nomor 3 dan 4 (Gambar 11), yang seharusnya daerah ini kondisinya stabil (kurva datar), akan tetapi secara visual pada saat penelitian telah mengalami abrasi (Gambar 2). Kurva energi flux tersebut menunjukkan bahwa pada titik 1 dan 2 terdapat grafik melonjak naik (abrasi), sedangkan di bagian lain pada titik 7 dan 8 terdapat grafik turun (sedimentasi) yang cukup signifikan (Gambar 12). Grafik naik tersebut menggambarkan bahwa di bagian selatan daerah penelitian terdapat titik-titik yang rawan terhadap abrasi gelombang secara musiman, sedangkan di bagian utaranya mulai dari titik 6 hingga 8 , berpotensi terjadi pendangkalan terutama, di daerah teluk seperti di daerah Pengabuan Besar hingga dermaga Krakatau Steel (Gambar 12).

Dari nilai energi flux tersebut, maka pendekatan laju perpindahan sedimen dapat dihitung dari hubungan linier antara energi flux gelombang dengan frekuensi angin pada lokasi peninjauan di lapangan. Oleh karena energi gelombang relatif kecil (tidak direkam) maka perhitungan kecepatan pasokan sedimen tersebut hanya dapat didekati secara kuantitatif dengan menggunakan formulasi dari persamaan linier empiris Komar dan Inman 1970 dalam Bijker (1988). Dengan mensubstitusikan parameter oseanografi pada dua lokasi, yaitu di titik 8 dan 2, maka diperoleh angka kumulatif pasokan sedimen (Q), yaitu minimum sebesar $0,38 \mathrm{~m}^{3} /$ hari pada titik 8 , dan maksimum $15,8 \mathrm{~m}^{3} /$ hari pada titik 2. Nilai ini menunjukkan bahwa energi gelombang di kawasan pesisir pantai Anyer dan sekitarnya, terutama di bagian selatan Teluk Anyer, berpotensi memasok
sedimen dengan volume kecepatan antara 0,38 hingga $15,8 \mathrm{~m}^{3} /$ hari pada musim barat yang terjadi dalam bulan Desember hingga Februari. Nilai tersebut bukan nilai mutlak, akan tetapi merupakan nilai pendekatan empiris kecepatan endapan sedimen yang dapat dipasokkan oleh gelombang selama periode musim timur dan musim barat, dengan asumsi bahwa tataan litologi di pesisir pantai tersebut terdiri atas sedimen ukuran pasir.

Nilai kumulatif Q pada dua lokasi pantai tersebut memberi gambaran bahwa pengaruh energi gelombang, khususnya pada musim barat, cukup besar memasok sedimen hasil erosi ke arah utara daerah penelitian. Kondisi ini telah terpantau di bagian selatan daerah Teluk Anyer dan sekitarnya dengan sisi pantai yang cenderung mundur (erosi). Proses erosi dan sedimentasi ini terjadi akibat adanya arus sejajar pantai yang aktif pada saat air bergerak pasang mencapai maksimum kemudian menggerogoti lereng pantai dan cenderung bergerak ke arah utara sesuai dengan arah refraksi gelombang mendekati pantai.

Dari beberapa lokasi yang mengalami erosi dan sedimentasi di pesisir pantai Anyer dan sekitarnya ternyata terdapat satu kawasan pesisir yang relatif stabil yang terdapat di daerah bagian utara Tanjung Batu Pajung, yaitu pesisir pantai yang berdekatan dengan pelabuhan PLTU Suralaya. Pola pergerakan sedimen ke arah utara ini ditandai dengan ditemukannya endapan sedimen pasir di antara titik tinjau 11 dan 12, sedangkan daerah lainnya terdapat di sekitar Pulau Merak Kecil, yaitu antara titik tinjau 9 dan 10 yang sekarang ini menjadi tempat wisata dan sarana hotel.

Gambar 12. Peta analisis energi golombang dan pergerakan sedimen oleh arus sejajar pantai perairan Anyer dan sekitarnya yang cenderung dikuasai oleh energi gelombang pada musim barat.

KESIMPULAN

Pola arus perairan Selat Sunda lebih dominan ke arah barat daya dan sewaktu-waktu berlawanan arah dengan gelombang yang memicu abrasi di tepian pantai Anyer dan sekitarnya. Kondisi litologi pantai daerah penelitian sangat rentan terhadap erosi terutama di bagian selatan pantai Teluk Anyer. Reklamasi pantai di bagian selatan diperkirakan telah memicu arus yang cenderung mengerosi bibir pantai di bagian utara dan tengah daerah penelitian.

UCAPAN TERIMA KASIH

Penulis berterima kasih kepada rekan-rekan yang tergabung dalam kerja sama penelitian. Terima kasih juga ditujukan kepada Dewan Redaksi dan Tim Editor atas saran dan masukannya dalam proses penerbitan makalah ini.

ACUAN

Anonim, 2002, Stasiun Meteorologi Serang-Banten 1998-2002, Badan Meteorologi dan Geofisika. Laporan bulanan.
Bijker, E.W., 1988. An international journal for coastal, harbour and offshore engineers. Coastal Engineering, 12 (3) : 285-297.
ljima and Tang F.L.W., 1967. Numerical calculation of wind wave at shallow water. Proc. $10^{\text {m }}$ Conf. Coastal Eng. : 3-45.

Mustafa, A., Naibaho, T., Raharjo, P., Arifin, D., Hahude, D., Aryawan, K., 2004. Penyelidikan geologi dan geofisika perairan Selat Sunda dan sekitarnya, Kabupaten Serang Propinsi Banten. Pusat Penelitian dan Pengembangan Geologi Kelautan, Laporan internal.
Sukardjono, Faturachman, A., Silitonga, F., Dewi, KT., Kurnio, H., 1989. Penyelidikan geologi dan geofisika di perairan Anyer dan sekitarnya, Selat Sunda, Jawa Barat. Pusat Pengembangan Geologi Kelautan, Laporan internal.

