ANOMALI GAYA BERAT DAN TATAAN TEKTONIK SEKITAR PERAIRAN LAUT BANDA DAN PULAU SERAM

B. Setyanta dan I. Setiadi
Pusat Survei Geologi
JI. Diponegoro No. 57 Bandung

Abstract

SARI Anomali gaya berat Bouguer dan gaya berat bebas udara daerah perairan Laut Banda dan Pulau Seram dapat dikelompokkan menjadi tiga bagian, yaitu bagian selatan, tengah, dan utara. Analisis gaya berat berdasarkan pengukuran di darat, digabungkan dengan data anomali free air di laut menghasilkan model struktur kerak yang erat hubungannya dengan komposisi batuan dan posisi tektonik. Struktur kerak di wilayah perairan Laut Banda, terutama tersusun oleh kerak basaltik Laut Banda sebagai alas yang mengalami perlipatan, dan bertubrukan dengan bongkah kerak granitik (Fragmen Benua Australia ?). Kerak basaltik Laut Banda melandasi batuan sedimen gunung api Pulau Banda, sedangkan kerak granitik melandasi batuan sedimen Tersier di Pulau Seram. Tumbukan sejak awal Pliosen dua macam afilitas kerak yang berbeda ini menyebabkan terjadinya beberapa hal utama, yaitu material-material dari berbagai sumber di Pulau Seram membentuk batuan campur-aduk dan oleh sesar-sesar anjak tersingkap ke atas. Intensitas tektonik juga menyebabkan sebagian bongkah kerak granitik mengalami fragmentasi yang menurunkan nilai anomali. Selain itu tumbukan juga memunculkan batuan vulkanik Kepulauan Banda yang menyebabkan terjadinya tektonik gravitasi untuk menuju proses kestabilan kerak basaltik. Model geodinamika kerak yang demikian berimplikasi terhadap produk potensi geologinya, baik yang ekonomis maupun resiko kebencanaan.

Kata kunci : gaya berat, evolusi tektonik, potensi geologi

ABSTRACT

Bouguer and free air gravity anomalies of the Banda Sea and Seram Island are divided into southern, central and northern parts. Gravity analyses based on land measurement combined with free air anomaly data of the sea produce crust structure model which close related to rock composition and tectonic position. Crust structure at Banda Sea is mainly composed of basaltic crust of Banda Sea as a base and fo/ded occurrence, collision with granitic crust border (Australian continent fragment ?). Banda Sea basaltic crust is underlying volcanic sediment Banda Island, while granitic crust is underlying Pre-Tertiary sediment rock at Seram Island. Collision which happened since early Pliocene of two different crust has caused many things such as material from many sources in Seram Island mad mélange rock and thrust fault that appeared in the surface. Tectonic intensity has also caused some granitic crust borders to get fragmentation which reduces value of the anomaly. Further-more, it appears volcanic rock of Banda Sea has caused gravity tectonic toward equilibrium process basaltic crust. This geodynamic crust model has an implication to geological potency product, both in economic or disaster risk.

Keywords : gravity, tectonic evolution, geological potency

PENDAHULUAN

Daerah penelitian yang terletak di sebelah selatan Palung Seram memotong tiga jalur kelompok batuan di sekitar Pulau Seram. Daerah ini termasuk kedalam wilayah Busur Banda, yaitu pada lekuk bagian utara pada sistem busur kepulauan yang berbelok sebesar 180° (Charlton \& Hall, 1994) (Gambar 1). Pemetaan gaya berat daerah Maluku, termasuk pulau-pulau di sekitar Laut Banda yakni Pulau Seram dan Pulau Banda, telah dilakukan oleh beberapa instansi/ahli geofisika. Bowin dkk. (1981) yang memetakan gaya
berat di perairan Laut Banda menghasilkan peta anomali bebas udara (free air anomaly).
Pada tahun 2005 Pusat Survei Geologi Bandung melakukan pemetaan gaya berat di kawasan yang sama. Distribusi titik-titik pengukuran yang dapat dicapai cukup banyak karena menggunakan helikopter sebagai sarana transportasi, sehingga peta yang dihasilkan cukup baik. Dalam tulisan ini analisis gaya berat menggunakan data hasil pemetaan Bowin dkk. (1981) digabung dengan data hasil pemetaan Pusat Survei Geologi tahun 2005 (Gambar 2).

Gambar 1. Letak daerah penelitian terhadap unsur-unsur tektonik Busur Banda (Chartion and Hall. 1994).

Gambar 2. Peta anomali gaya berat Bouguer (di darat) dan anomal) gaya berat bebas udara (di laut) daerah perairan P. Banda dan P. Seram dan topografi arah AB .

Seperti kita ketahui bahwa Busur Banda sangat menarik perhatian dunia ilmu kebumian karena terletak pada daerah batas antara kerak Laut Banda dan kerak benua Australia. Namun demikian, di sini kerak benua ditekuk ke bawah oleh kerak samudra (subducted), sehingga keadaan yang tidak lazim tersebut menimbulkan kerumitan geologi yang terus menjadi bahan silang pendapat para ahli ilmu kebumian (Kusumadinata dkk., 1983).

Penafsiran struktur kerak dilakukan dengan membuat penampang gaya berat bawah permukaan memotong Laut Banda dari selatan Pulau Banda hingga sebelah utara Pulau Seram, sejauh kurang lebih 270 km. Penampang tersebut dibuat berdasarkan :

1. Pengukuran gaya berat di daratan Seram, Kepualuan Banda oleh penulis dan kawankawan, dan juga data gaya berat di sebagian perairan Laut Banda (dalam Free Air Anomaly) hasil pengukuran Bowin dkk. (1981)
2. Data geologi dan geofisika dari penulis terdahulu
3. Data kedalaman laut di perairan Laut Banda

Penelitian yang menghasilkan model bawah permukaan ini sedikit banyak diharapkan dapat memberikan gambaran kerak bumi di daerah ini ditinjau dari aspek gaya berat.

TEKTONIKA

Busur Banda terletak di daerah pertemuan tiga lempeng kerak bumi, yaitu Lempeng IndoAustralia, Lempeng Eurasia, dan Lempeng Pasifik.

Di bagian tengah sistem kerangka tiga lempeng kerak bumi ini terdapat kerak samudra tua yang diduga berumur Mesozoikum (Charlton \& Hall, 1994, Hartono, 1990, De Smet, 1999). Kerak samudra atau Lempeng Laut Banda ini dibatasi oleh beberapa palung luar, yakni Palung Timor, Palung Tanimbar, Palung Aru, dan Palung Seram yang saling bersambung membentuk bujur sangkar. Di daerah penelitian terdapat tiga sabuk kelompok batuan yang dipisahkan secara tektonis. Kelompok 1 adalah kelompok batuan malihan dan fragmenfragmen batuan ultramfik dan ofiolit, kelompok 2 adalah batuan sediment Perm-Trias dan Jura yang tersesarkan dan terlipat kuat, dan kelompok ketiga
adalah batuan Tersier pada cekungan Neogen. Para ahli berpendapat bahwa penampang melintang yang memotong Palung Seram, Palung Tanimbar, dan Palung Timor menunjukkan struktur parit yang secara umum telah ditafsirkan sebagai akibat penunjaman (Hamilton, 1979; Bowin dkk.,1980; Karig dkk., 1987; Letouzey dkk., 1983), dan jalur ini populer dengan sebutan jalur anomali negatif Vening Meinesz (Howell, 1959).

Audley-Charles dkk. (1974) berpendapat bahwa jalur penekukan yang sebenarnya bukan pada palung-palung yang telah disebutkan di atas, tapi terletak pada palung di sebelah utara Pulau Timor, menerus hingga Palung Weber. Selanjutnya menurut Audley-Charles dkk. (1974) Pulau Timor dan Seram merupakan bagian tepi kerak benua Australia, sedangkan menurut Hamilton (1979) Pulau-pulau tersebut dianggap sebagai non-volcanic outer arc dengan pulau-pulau gunung apinya terdapat di sekeliling Laut Banda, seperti Pulau Wetar hingga Pulau Banda. Sementara Laut Banda itur sendiri menurut Audley-Charles dkk. (1974) merupakan recent oceanic sea floor spreading, sementara Carter dkk. (1976) dan Hamilton (1979) menyimpulkan sebagai akibat open back arch spreading.

GEOLOGI DAN KAITANNYA DENGAN ANOMALI GAYA BERAT

Anomali gaya berat bebas udara (Free Air Anomaly) positif dengan nilai sekitar 40 mgal hingga 350 mgal yang tersebar dari pantai selatan Pulau Seram hingga Laut Banda di sekitar Kepulauan Banda dapat jadikan satu kelompok, yaitu kelompok, anomali bagian selatan (Gambar 2). Secara umum kontur anomali gaya berat wilayah ini berpola melingkar positif dan sebagian ada yang berpola sejajar dengan jarak antar kontur relatif rapat. Kontur anomali berpola melingkar positif diduga merupakan cerminan aspek gaya berat dari adanya batuan ofiolit yang tersingkap di permukaan atau di bawah permukaan dengan kedalaman relatif dangkal. Kelurusan anomali terdapat di bagian selatan, yaitu di sekitar Kepulauan Banda yang berarah barat timur dan di bagian timur sedikit membelok ke selatan. Keadaan ini kemungkinan adalah refleksi sesar mendatar yang menerus dari busur Vulkanik Banda. Dari data kegempaan diketahui bahwa sesar ini merupakan sesar aktif dan sering menimbulkan gempa (USGS, 2007; gambar 3 dan 4). Kemudian
kelompok kedua atau bagian tengah ada di daratan Pulau Seram yang membentuk pọla melengkung sejajar dengan nilai sekitar -40 mgal hingga 80 mgal mempunyai landaian anomali cukup tinggi (jarak antar kontur relatif rapat), dan menunjam ke arah utara ini adalah pengaruh dasar laut yang berbentuk parit dan juga sesar naik akibat obdaksi. Sementara kontur anomali berpola sejajar di sebagian Pulau Seram kemungkinan adalah cerminan lajur prisma akrasi yang membentuk Pulau Seram dengan jurus umum relatif barat - timur. Bahkan di beberapa tempat terdapat cemaran material-material upper mantle yang ikut terdorong ke atas (tersingkap di beberapa tempat sebagai bongkahan batuan ultramafik di dalam massa dasar batulempung (Gafoer dkk., 1993). Namun demikian, masih ada juga beberapa tempat dengan kontur berpola elipsoida negatif kecil yang diduga merupakan pola di daerah cekungan sedimen.

Kelompok ketiga adalah bagian kelompok anomali bagian utara, yaitu terletak di Pulau Seram bagian utara dan di Laut Seram yang kecuramannya sudah berkurang, sehingga agak landai, dan nilai anomalinya sekitar -40 hingga 60 mgal. Kontur anomali berpola elips dan sebagian sejajar dengan jarak antar kontur relatif panjang. Kontur anomali berpola elipsoida negatif pada kelompok ini ditafsirkan merupakan refleksi cekungan sedimen yang cukup tebal.
Kerak pada bagian ini mempunyai rapat massa lebih rendah daripada kerak granitan yang masih homogen karena sudah bercampur aduk dengan materialmaterial lain. Keadaan yáng demikian berpengaruh pada pembacaan alat sehingga nilai anomali yang dihasilkan lebih rendah. Sementara itu, di sebelah utara Pulau Seram, kelompok anomali gaya berat bebas udara membentuk lajur-lajur memanjang berarah barat - timur dengan landaian rendah, meninggi ke arah utara. Hal ini wajar karena memang ke arah utara kerak granitiknya makin dangkal (batuan sedimennya menipis) akibat mekanisme Sesar Regional Sorong. Data seismik dari Letouzey dkk. (1983) menunjukkan bahwa keadaan daerah ini memang demikian (lihat juga Gambar 5). Dari uraian di atas, dapat dilihat bahwa arah umum jurus jalur anomali adalah barat - timur, baik dari anomali udara bebas maupun anomali Bouguer. Hal ini sesuai dengan arah umum gaya tektonik yang membentuk Pulau Seram, yaitu utara - selatan, sehingga membentuk arah umum jurus perlapisan barat timur.

Gambar 3. Pelakegempaan daerah Busur Banda daritahun 1990 hingga

Gambar 4. Penyebaran mekanisme vokal gempa dangkal akibat sesar

Gambar 5. Penampang struktur bawah permukaan arah selatan-utara bendasarkan data seismik daerah Bûsur Banda bagian utara (Letouzey dkk, 1983).

Penampang Gaya Berat

Penampang gaya berat bawah permukaan dibuat tegak lurus terhadap arah jurus jalur anomali, yakni arah AB (lihat Gambar 6). Namun demikian harus diketahui terlebih dahulu bahwa interpretasi gaya berat bersifat tidak khas (non unique), yang berarti bahwa dari suatu anomali gaya berat dapat diinterpretasikan banyak model struktur bawah permukaan. Untuk itu perlu gambaran geologi secara umum, jalur-jalur sesar regional, posisi tektonik, kecermatan menentukan nilai rapat massa, maupun jalur-jalur pluton yang lain untuk digunakan sebagai acuan.

Model gaya berat yang dihasilkan berbentuk poligonpoligon yang berasal dari kelompok-kelompok rapat massa batuan sebagai berikut :

1. Kelompok rapat massa $1,03 \mathrm{gr} / \mathrm{cc}$ adalah air laut di perairan Laut Banda.
2. Kelompok rapat massa rata-rata $3,1 \mathrm{gr} / \mathrm{cc}$ adalah kelopok batuan yang menyusun mantel bagian atas.
3. Kelompok rapat massa rata-rata $2,8 \mathrm{gr} / \mathrm{cc}$ adalah kelompok material yang menyusun kerak samudra Laut Banda (basaltic layer).
4. Kelompok rapat massa rata-rata $2,67 \mathrm{gr} / \mathrm{cc}$ adalah kelompok material penyusun kerak granitik (Kerak Benua Australia ?).
5. Kelompok rapat massa rata-rata $2,4 \mathrm{gr} / \mathrm{cc}$ adalah kelompok batuan campur aduk yang terdiri atas batuan malihan, batuan, ultramafik, olistostrom, batuan sedimen, dil.
6. Kelompok rapat massa rata-rata $2,58 \mathrm{gr} / \mathrm{cc}$ adalah kelompok batuan kerak granitik yang sudah mengalami fragmentasi.
7. Kelompok batuan dengan rapat massa rata-rata $2,2 \mathrm{gr} / \mathrm{cc}$ adalah kelompok batuan vulkanik Tersier di Kepulauan Banda dan batuan sedimen Tersier di Seram Utara.

Berdasarkan poligon-poligon di atas, dapat dibuat model geologi bawah permukaan yang dapat mengelompokkan elemen-elemen struktur dan tektonik yang ada pada jalur ini, yakni :

Batuan Kerak Samudra Laut Banda

Batuan penyusun kerak Laut Banda mempunyai rapat massa rata-rata sekitar $2,8 \mathrm{gr} / \mathrm{cc}$. Rapat masa ini diperoleh berdasarkan rata-rata rapat massa material-material penyusun kerak samudra secara umum yang terdiri atas batuan-batuan ultramafik, gabro, lava basal dan sedimen-sedimen laut dalam, seperti rijang, sekis hijau, dan batulempung (Cann, 1970; Suparka, 1977; dan Sardjono, 2003). Dalam Gambar 7 dapat dijelaskan keadaan lempeng Laut Banda dalam keadaan isostatik bersentuhan langsung dengan bagian atas selubung, diskontinuitas Moho berada 30 km di bawah permukaan laut. Menurut Sardjono (2003), dalam kondisi kesetimbangan isostatik tersebut, lengkung anomali gaya berat Bouguer sama dengan nol. Bandingkan dengan keadaan sekarang setelah sekian lama mengalami evolusi akibat tumbukan yang mengalami perubahan sesuai dengan hasil pengukuran di lapangan (lihat Gambar 6 dan 7).

Batuan gunung api di Kepulauan Banda

Batuan gunung api di kepulauan ini sampai saat ini masih menjadi kontroversi, terutama mengenai asalmuasalnya. Dari model AB, batuan ini terletak di atas batuan alas kerak samudra Laut Banda, dengan rapat massa sekitar $2,2 \mathrm{gr} / \mathrm{cc}$. Batuan gunungapi Kepulauan Banda tersusun oleh batuan-batuan toleit yang terbentuk bersamaan dengan terbentuknya busur Vulkanik Banda, yakni paling tidak sejak Eosen Awal (Hartono, 1990). Model bawah permukaan gaya berat pada bagian ini lebih mirip dengan model tektonik gravitasi yang diusulkan oleh Van Bemmelen (1949) pada daerah busur vulkanik Kuarter di Jawa yang menyatakan bahwa gaya gravitasi materialmaterial vulkanik menyebabkan penurunan batuan dasar karena pengaruh beban atau gravitasi.

Cekungan Batuan Pratersier

Cekungan batuan Pratersier menempati bagian selatan Pulau Seram, dan membentuk kontur anomali memanjang dari barat ke timur dengan nilai 0 hingga positip 80 mgal , dengan landaian rendah. Model gaya berat cekungan ini diisi oleh litologi dengan rapat massa rata-rata sekitar 2,4 $\mathrm{gr} / \mathrm{cc}$. Poligon dengan rapat massa sebesar 2,4 $\mathrm{gr} / \mathrm{cc}$ ditafsirkan sebagai material kerak basaltik Laut Banda yang bercampur dengan material kerak granitik dan batuan ultramafik yang berasal dari material-material selubung bagian atas. Sebagian material-material di daerah ini berbentuk batuan malihan derajat tinggi, seperti amfibolit, sekis hijau, dan batusabak (Tjokrosapoetro dkk., 1993) yang terbentuk melalui proses anateksis pada suhu tinggi, bertekanan sedang dan mengalami deformasi dinamik pada saat dan setelah proses pemalihan (Sudarsono dkk., 2000). Peletakan batu-batuan metamorfik tingkat tinggi dan material-material selubung atas (batuan ultramafik) ke dekat permukaan adalah akibat kontraksi kerak bumi sejak Paleozoikum (Setyawan dkk., 2000) dan membentuk thrust sheet bed (Barber, 1979 dalam Munasri dkk., 1999). Selanjutnya batu-batuan pada kelompok ini terusmenerus mengalami pengangkatan orogenik dan perlipatan, sehingga menjadi sumber litologi untuk Cekungan Tersier Seram bagian utara. Menurut keadaan di lapangan, kelompok batuan pada cekungan ini mempunyai kontak ketidakselarasan dan kontak tektonik déngan batuan dari cekungan Tersier dan umumnya sesar naik (Tjokrosapoetro dkk., 1993). Keadaan yang demikian sesuai dengan model gaya berat yang telah dibuat yang memunculkan kelompok batuan dengan rapat massa $2,4 \mathrm{gr} / \mathrm{cc}$ (batuan campur aduk) ke atas permukaan karena tersesarkan (Gambar 6).

Cekungan Sedimen Tersier Seram Bagian Utara

Pada model gaya berat, cekungan ini terletak di bagian paling utara dengan rapat massa rata-rata sekitar $2,2 \mathrm{gr} / \mathrm{cc}$. Cekungan ini lebih dikenal sebagai Cekungan Wahai (Paten dan Zilman, 1975) yang tersusun oleh batupasir, batugamping, napal dan breksi gunungapi dan tufa (Gafoer dkk., 1993;

Geo-Dynamics

Tjokrosapoetro dkk., 1993). Di beberapa tempat dijumpai bongkah-bongkah berbagai jenis batuan yang bersumber dari formasi batuan yang lebih tua dalam massa dasar lempung (Gafoer dkk., 1993; Tjokrosapoetro dkk., 1993).
Cekungan ini mempunyai ketebalan paling tidak 4000 m. Di beberapa tempat (Lapangan Oseil, Lapangan Bula, Lapangan Nief, dan Lapangan Belien) telah terbukti menghasilkan minyak bumi. Fasies berpori dan lulusair pada batupasir dan karbonat yang terdapat dalam cekungan ini
bertindak sebagai lapisan reservoir (Kusumadinata, 1980). Pada peta anomali Bouguer, cekungan ini digambarkan oleh kelompok garis kontur dengan pola memanjang, arah barat - timur dengan nilai sekitar - 40 hingga 20 mgal. Cekungan ini dilandasi oleh kerak granitik ($2,67 \mathrm{gr} / \mathrm{cc}$) dan fragmen kerak granitik ($2,58 \mathrm{gr} / \mathrm{cc}$). Walaupun mirip zona akrasi pada sistem tumbúkan, tetapi data gaya berat menunjukkan nilai yang rendah, sehingga ditafsirkan bagian ini adalah bagian akhir kerak kontinen, jadi bukan kompleks akrasi.

Gambar 6. Model struktur kerak di sekitar perairan Laut Banda (di laut berdasarkan kurva anomali udara bebas, di darat berdasarkan kurva anomali Bouguer).

KETERANGAN
Masa air laut $1.03 \mathrm{gr} / \mathrm{cm}^{3}$
Lapisan Batuan Sedimen Pra-Tersier dan Tersier 2,2gr/cm
Batuan Sedimen Volkanik 2,2 gr/cc
Lapisan Kerak Basaltik (Kerak Samudra) $2.80 \mathrm{gricm}{ }^{3}$
Lapisan Kerak Kontinen 2,67 gr/cm ${ }^{3}$
Material Selubung Atas $3.10 \mathrm{gr} / \mathrm{cm}^{3}$

Gambar 7. Hipotesa evolusi kerak dan lengkung anomali gaya berat primitif (sebelum mengalami deformasi) dan setelah mengalami deformasi (pelipatan) daerah sekitar Kep. Banda dan P. Seram).

DISKUSI

Seperti yang telah disebutkan di atas, analisis gaya berat telah menghasilkan model berbentuk poligonpoligon geometri. Jika bertolak dari sistem struktur kerak primitif sebelum terkena deformasi (lengkung anomali di atas dua macam kerak sebelum tumbukan masih dalam keadaan nol pada kesetimbangan isostatis), berafinitas granitan (2,67 $\mathrm{gr} / \mathrm{cc}$), dan basaltik ($2,80 \mathrm{gr} / \mathrm{cc}$), maka poligonpoligon hasil analisis di atas dapat menerangkan terjadinya proses evolusi kerak secara garis besar. Sebelum terjadi pemekaran, gaya tektonik yang bekerja di daerah ini adalah gaya tekan (compressional regime) dari rangkaian pembentukan Busur Banda yang menurut Hartono (1990) berlangsung sêjak Jura hingga Kapur Akhir. Keadaan demikian menyebabkan lapisan Moho sedikit naik untuk mengisi ruangan akibat naiknya lapisan kerak basaltik sehingga lengkung anomali juga berubah sedikit (Gambar 7, no 2). Setelah Jura Akhir - Kapur Awal yang ditandai dengan kelurusan magnet M25-MO (Laponille dkk., 1985; dalam Hartono, 1990; Gambar 8) maka pergerakan lempeng samudra Laut Banda menyebabkan terbentuknya sesar geser dengan arah relatif tenggara barat laut sebagai konsekuensi gaya utama dari utara - selatan. Sifat getas pada kerak bagian atas pada zona sesar menyebabkan keretakan diikuti oleh keluarnya aliran magma dan material-material Moho pada zona tersebut yang menyebabkan lengkung anomali naik. Desakan material-material vulkanik dari magma dan material-material Moho, menyebabkan perubahan gaya tektonik di sekitar daerah ini, yakni menjadi gaya tektonik regang (extensional tectonics) yang semakin kuat sejalan dengan perkembangan busur vulkaniknya sampai terjadi kesetimbangan isostatik kembali. Namun demikian, proses tumbukan dengan lempeng granitan Pulau Seram terus berlangsung, sehingga pada bagian ini terjadi obdaksi lempeng basaltik dan fragmentasi material-material lempeng granitan yang menyebabkan material-material di daerah ini bercampur-aduk. Keadaan yang demikian menyebabkan nilai anomalinya makin menurun akibat nilai rapat massanya mengecil dibandingkan nilai rapat massa kerak aslinya.

Pada beberapa tempat biasanya lempeng samudra ini akan menunjam ke bawah kerak benua yang tercermin pada anomali gaya berat negatif yang nampak teratur dalam suatu pola tertentu seperti di selatan Jawa. Namun demikian, data gaya berat dan geologi menunjukkan bahwa di daerah ini kerak benua menekuk ke bawah dan sebaliknya kerak samudra mengalami obdaksi naik ke atas melalui sesar-sesar naik. Hal ini diperlihatkan dengan nilainilai anomali yang cukup tinggi (tidak sampai negatif seperti di selatan Jawa) walaupun masih memperlihatkan keteraturan pada polanya. Keadaan yang demikian kemungkinan disebabkan oleh naiknya batuan ultramafik sebagai bagian dari ofiolit kerak samudra dan selubung atas yang mempunyai rapat massa relatif lebih tinggi daripada kerak kontinen granitik. Bahkan di beberapa tempat di Pulau Seram batuan ini tersingkap ke permukaan yang sebagian membawa bahan-bahan galian seperti kromit dan mineral-mineral bijih yang lain. Di samping potensi mineral-mineral ekonomis, daerah ini juga membawa potensi kebencanaan, terutama gempa bumi dan tanah longsor. Hal ini karena daerah Seram bagian selatan ini dilandasi oleh batuan campur aduk yang tidak stabil akibat sesar-sesar yang masih aktif (model gaya berat Gambar 6). Keadaan yang demikian ini merupakan masukan bahwa daerah ini kestabilannya kurang bagus karena ada wacana bahwa ibukota Propinsi Maluku akan dipindahkan dari Ambon ke Masohi (Seram Selatan). Memasuki daerah Pulau Seram bagian utara, nilai anomali mulai menurun hingga mencapai -50 mgal . Dalam pemodelan, daerah ini ditempati oleh batuan sedimen Tersier dan dilandasi oleh batuan kerak granitik. Cekungan sedimen yang berpotensi batubara dan hidrokarbon terdapat di Cekungan Tersier Seram bagian utara. Cekungan ini secara tektonis posisinya pada busur luar non-vulkanik (outer Banda Arc) dari Busur Banda (Kusumadinata, 1980). Dari anomali gaya berat terlihat bahwa cekungan ini berkembang dengan arah barat - timur di bagian utara Pulau Seram. Daerah ini adalah sasaran untuk eksplorasi lanjutan lapangan-lapangan minyak yang sudah ada. Selain itu, daerah ini juga bagus untuk pengembangan wilayah karena batuannya dilandasi oleh kerak granitan yang relatif lebih stabil daripada bagian selatan. Mengenai
keberadaan batuan gunungapi Kepulauan Banda, data geologi menunjukkan bahwa kemungkinan sumber erupsinya berasal dari daerah ini karena singkapan batuan yang dijumpai menunjukkan keselarasan antara vulkanik Tersier dan Kuarter (Agustiyanto dkk., 1994), sehingga disimpulkan erupsi berlangsung berkelanjutan dari Tersier hingga Kuarter. Data-data kegempaan menunjukkan
memang daerah ini merupakan zona sesar yang dapat menimbulkan zona-zona lemah yang akhirnya berkembang menjadi busur vulkanik dan hingga sekarang masih menimbulkan gempa-gempa tektonik dangkal (Gambar 3 dan 4). Pada Gambar 4 terlihat mekanisme gempa yang disebabkan oleh sesar-sesar geser dengan kedalaman sekitar $0 \quad 35$ km yang masih aktif sampai sekarang (USGS, 2007).

Gambar 8. Kelurusan magnet di Laut Banda dan Argo Abyssal Plain (Lapouille dkk., 1985; dalam Hartono, 1990).

KESIMPULAN

- Daerah sepanjang lintasan pemodelan dapat dibagi menjadi tiga segmen kerak yaitu kerak samudra basaltik (rapat massa $2,8 \mathrm{gr} / \mathrm{cc}$), kerak granitik (2,58-2,67 gr/cc) dan batuan campur aduk yang terdiri atas bongkah-bongkah kerak samudra, batuan malihan, dan fragmenfragmen kerak granitik ($2,4 \mathrm{gr} / \mathrm{cc}$) .
- Lengkung anomali Bouguer dan anomali bebas udara sepanjang lintasan pemodelan sangat erat kaitannya dengan undulasi kerak, terbentuknya palung-palung, dan fragmentasi kerak basaltik dan kerak granitik akibat proses penekukan kerak.
- Akibat pengaruh pembebanan material gunung api Kepulauan Banda, kerak basaltik di daerah ini mengalami penurunan yang ditunjukkan oleh anomali rendah di sekitar Kepulauan Banda.
- Walaupun bongkah-bongkah kerak basaltik naik ke atas akibat sesar-sesar bancuh, tetapi bercampur dengan batu-batuan malihan dan material-material kerak granitik, sehingga rapat massanya kecil dan menurunkan nilai anomali di daerah ini, walaupun tidak sampai negatif seperti palung selatan Jawa.
- Berdasarkan struktur kerak yang melandasi, daerah ini mengandung potensi geologi yang bernilai ekonomis maupun nilai kebencanaan yang cukup berimbang.

UCAPAN TERIMA KASIH

Pada kesempatan ini penulis mengucapkan terima kasih kepada Drs. Indra Budiman M.Sc. selaku ketua Program Pemetaan dan Penelitian Dasar atas diskusi dan masukan-masukannya hingga selesainya makalah ini

ACUAN

Audley-Charles, M.G., Carter D.J., and Barber A.J., 1974. Stratigraphic basis for the interpretations of the Quter Banda Arc, Eastern Indonesia, Proc. Indon. Petrol. Assoc., $3^{n d}$ Ann. Conv., Jakarta, 25-44.
Agustiyanto, D.A., Suparman M., Partoyo E. dan Sukarna D. 1994. Peta geologi Lembar Moa, Damar dan Bandanaira, Maluku, skala 1 : 250.000, Pusat Penelitian dan Pengembangan Geologi, Bandung.
Bowin, C.O., Warsi C, Milligan J., 1981. Free Air Anomaly Atlas of The World, Government Printing Office, Washington DC. USA.
.------------, Purdy G.M., Johnston C.R., Shor G., Lawver L, Hartono H.M.S and Jezek P., 1980, Arccontinent collision in Banda Sea region, Am.Assoc.Petrol.Geol.Bull., 64: 868-915.
Cann, J.R., 1970. New Model for The structure of the oceanic crust, Nature, 226, 928-930.
Carter, D.J., Audley-Charles M.G. and Barber A.J., 1976. Stratigraphic analysis of island arc continental margin collision in eastern Indonesia, J. Geol. Soc. London, 132:179-198.
Charlton, T. and Hall W, 1994. New biostratigraphic result from the Kolbano area, Southern West Timor. Implications for the Mesozoic-Tertiary stratigraphy of Timor, Southeast Asian Earth Sci., $9: 113$ 122.

De Smet, M.E.M., 1999. On The Origin of The Outer Banda Arc, Tectonics and Sedimentation of Indonesia, Proc. of the Geology of Indonesia Book 50^{m} Ann. Mem. Sem. Authored by R.W. van Bemmmelen, ed.by H.Darman \& F.H. Sidi, 81 pp.

Gafoer, S., Kuntodirdjo K and Suharsono, 1993. Peta Geologi Lembar Bula dan Watubela, Maluku, skala 1 : 250.000, Pusat Penelitian dan Pengembangan Geologi, Bandung.

Hamilton, W., 1979, Tectonic of the Indonesia Region, US Geol. Surv. Prof. Paper., 1070:345 pp
Hartono, H.M.S., 1990. Terbentuknya busur vulkanik Banda, Geologi Indonesia, Majalah IAGI, 13, (2) : 105112.

Howell Jr., B.F., 1959, Introduction to Geophysics, McGraw-Hill Book Co., 399 pp

Karig, D.E., Barber A.J., Charlton T, Klempere S and Hussong D.M., 1987. Nature and distribution of deformation across the Banda-arc-Australia collision zone at Timor, Bull. Geol. Soc. Am. 9:18-32.
Kusumadinata, R.P, 1980. Geologi Minyak dan Gas Bumi, edisi II, jilid 2, ITB Bandung, 296 hal.
..----------- Humbarsono dan Riyanto B, 1983, Sekitar munculnya Pulau baru di Kepulauan Kai, Busur Kepulauan Banda, Proceedings PIT XII IAGI, Yogyakarta Desember 1983 : 53-59.
Letouzey, J., Clarens P. de, Guignard J. and Louis Berthon J, 1983, Structure of the north Banda-Molucca area from multichannel seismic reflection data, Proc. Indon. Petrol. Assoc. Twelfth Ann. Conc. Jakarta, 143-156.

Munasri, H. Permana dan Siregar S, 1999, Is Seram Island the Mirror of Timor Island?, Proc. of the $28^{\text {min }}$ IAG/ Ann. Con, I, Ed.by I.Busono \& H. Alam, 51-61.
Paten, R.J. and N.J. Zillman, 1975. Exploration and Petroleum Peospect Bula Basin, Seram, Indonesia, Proc. Indon. Petroleum Assoc. $3^{\text {nd }}$ Ann. Conv., : 12
Sardjono, 2003. Anomali gaya berat dan dinamika kerak bumi, Majalah IAGI, 33, (2) : 43-55.
Sarmili, L., Sukmana N. dan Saripudin A., 2000. Indication of a manganese crust on volcanic rocks within the North Banda Sea (East Indonesia), Abstracts 29^{m} Ann. IAGI Conv, : h. 29.
Setyawan, B.S., Wijaya B, dan Guntoro A., 2000. Mengurai perkembangan tektonik Pulau Seram dan Ambon, Abstracts $29^{\prime \prime}$ Ann. IAGI Conv.: h. 102.
Sudarsono, Mulyadi D. dan Permana H., 2000. Petrografi batuan malihan derajat tinggi Komplek Kobipoto di daerah Solea, Seram Utara, Abstracts $29^{\prime \prime}$ Ann. IAGI Conv : h. 93.

Suparka, 1977. Hubungan antara khromit dan batuan ultramafik, dengan daerah Batambono-Karabe Sulawesi Selatan sebagai tinjauan, Majalah Riset Geologi dan Pertambangan, LGPN LIPI.
Tjokrosapoetro, S., Achdan A., Suwitodirdjo K., Rusmana E. dan Abidin H.Z., 1993, Peta Geologi Lembar Masohi, Maluku, skala $1: 250.000$, Pusat Penelitian dan Pengembangan Geologi, Bandung.
USGS, 2007. Historic Seismicity : Buru, Indonesia, USGS Earthquake Hazard Open File : 2 pp.
Van Bemmelen, R.W. 1949. The geology of Indonesia, Vol I A, Govt. Print. Office, The Hague : 732 pp.

[^0]Revisiterakhir : 16 November 2007

[^0]: Naskah diterima : 28 Maret 2007

