AN OVERVIEW OF ARC MAGMA PETROGENESIS

Authors

  • U. Hartono Centre for Geological Survey
  • R. Isnu H. Sulistyawan Centre for Geological Survey

DOI:

https://doi.org/10.33332/jgsm.geologi.v21i4.145

Abstract

The petrogenesis of subducted-related magmas is complicated, and has been subject of controversy and widely discussed among petrologists, involving multi sources and multi processes. The source of arc magmas includes upper mantle with either MORB-like or OIB-like, the subducted slab which consists of an oceanic basaltic crust and possibly sediments, including material derived either through melting or release of fluid, and the arc crust. The process involves fractionation, assimilation or contamination and magma mixing. There are two types of contamination including source and crustal contaminations. Trace element and isotopic evidences suggest that most arc magmas are derived from melting of upper mantle induced by released fluids and incompatible elements from a subducted oceanic crust. Subsequent fractionation with or without assimilation or contamination and magma mixing would result in more acid magmas. However, crustal-derived magmas, resulted from melting of either subducted slab or lower crust, are also present in some arcs.


Keywords : arc magmas, petrogenesis, overview

Downloads

Download data is not yet available.

References

Arculus, R.J. and Powell, R., 1986. Source component mixing in the region of arc magma generation. J. Geophys. Res., 91: 5913-5926.

Armstrong, R.L., 1968. A model for the evolution of strontium and lead isotopes in a dynamic earth. Rev. Geophys., 6: 175-1999.

Bourdon, E., Eissen, J-P., Monzier, M., Robin, C., Martin, H., Cotton, J. and Hall, M.L., 2002. Adakite-like lavas from Antisana Volcano (Edcuador): Evidence for slab melt metasomatism, beneath Andean Northern Volcanic Zone. J. Petrology, 43: 99-217

Bowen, N.L., 1928. The evolution of Igneous rocks. Princeston University Press. 332 pp

Brophy, J.G., 1986. The Cold Bay volcanic centre Aleutian volcanis arc. Contrib. Mineral. Petrol., 93: 368-380.

Brophy, J.G. and Marsh, B.D., 1986. On the origin of high alumina arc basalt and the mechanics of melt extraction. J. Petrology, v. Part 4 : 763-789.

Castillo, P.R., 2006. An overview of adakite petrogenesis. Chinese Science Bulletin, v. 51, no. 3: 257-265.

Castillo, P.R., Janney, P.E. and Solidum, P.R., 1999. Petrology and geochemistry of Camiguin Island southern PhillipinesL insight into the source of adakite and other lavasin a complex arc tectonic setting. Contrib. Mineral. Petrol., 134: 33-51.

Carroll, M.R. and Wyllie, P.J., 1990. The system tonalite-H2O and the genesis of calc-alkaline magmas. Amer. Mineral., 75: 345-257.

Chen, C.H., Shieh, Y.N., Lee, T., Lee, T., Chen, C.H. and Mertzman, S.A., 1990. Nd-Sr-O isotopic evidence for unsual mantle component under Luzon arc. Geochem. Cosmochem. Acta, 54: 2473-2483.

Chiaradia, M., Fonboté, L. and Beate ,b., 2004. Cenozoic continental arc magmatism and associated mineralization. Mineralium Deposita, 39: 204-222.

Chung, S.L., Liu,D.Y., Ji, J., Chu, M.F., Lee, H.Y., Wen, D.j., Lo, C.H., Lee, T.Y., Qian, Q. and Zhang, Q., 2003. Adakite from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31: 1021-1024.

Corbett, G.J. and Leach, T.M., 1998. Structure of magmatic ore systems. In Corbett, G.J. and Leach, T.M. (eds) Southwest Pacific rim gold-copper systems: structure, alteration and mineralizastion. Society of Economic Geologists Special Publication, 6: 31 – 67.

Cosky, B., Baxter, J., Crombie, S., Gordon, J. and Cribb, W., 2005. Potential formation of “hybrid†adakite magmas within the Northern Oregon Cascaddia subduction zone. 2005 Salt Lake City Annual meeting.

Crawfrod, A.J., Falloon, T.J. and Eggins, S., 1987. The origin of island arc high-alumina basalts. Contrib. Mineral. Petrol., 97: 417-430.

Crawford, A.J., Beccaluva, L. and Serri, G., 1981. Tectonomagmatic evolution of the west Phillipine-Mariana region and the origin of boninites. Earth planet. Sci. Lett., 54: 346-356.

Danyushevsky, L., Falloon, T., and Crawford, A., 2006. Subduction-related magmatism at the southern tip of the North Fiji back arc basin. AESC, Melbourne, Australia:1- 8.

Davidson, J.P., 1985. Mechanism of contamination in Lesser Antilles island arc magmas from radiogenic and oxygen isotope relationship. Earth Planet. Sci. Lett., 72: 163-174.

Davidson, J.P., 1986. Isotopic and trace element constrains on the petrogenesis of subduction related lavas from Martinique, Lesser4 Antilles. J. Geophys. Res., 91, B6: 5943-5962.

Davidson, J.P., 1987. Crustal-magma interactions and the evolution of arc magmas: The San Pedro-Pellado volcanic complex, Southern Chilean Andes. Geology, 15: 443-446.

Defant, M.J. and Drummond, M.S., 1990. Deviation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662-665.

Defant, M.J. and Kepezhinskas, P., 2001. Evidence suggests slab melting in arc magmas, EOS, vol. 82, No. 6.

DePaolo, D.J. and Wasserburg, G.J., 1977. The source of island arc as indicated by Nd and Sr isotopic studies. Geophys. Res. Lett., 4: 465-468.

DePaolo, D.J. and Johnson, R.W., 1979. Magma genesis in the New Britain island arc: constrain from Nd and Sr isotope and trace element patterns. Contrib. Mineral. Petrol., 70: 367-379.

Dickinson, W.R. and Hatherton, T., 1967. Andesitic volcanism and seismicity around the Pacific. Science, 157: 801 – 803.

Edward, C., Menzies, M. and Thirwall, M., 1991. Evidence from Muriah, Indonesia, for the interplay of supra-subduction zone and intraplate process in the genesis of potassic alkaline magmas. J. Petrology, 32: 555-592.

Eggins, S.M., 1993. Origin and differentiation of picritic arc magmas, Ambae (Aoba), Vanuatau. Contrib. Mineral. Petrol., 114: 79-100.

Foden, J.D., 1979. The petrology os Sangeang volcanic rocks from Lombok Sumbawa, Lesser Sunda island. Unpubl. Ph.D thesis, Univ. of Tasmania.

Foden, J. D. and Varne, R., 1980. The petrology and tectonic setting of Quaternary-Recent volcanic centre of Lombok and Sumbawa, Sunda arc. Chem. Geol., 30: 201-226.

Foley, S.F. and Wheller, G.E., 1990. Parallels in the origin of the geochemical signatures of island arc volcanics and continental potassic igneous rocks: the role of residual titanite. Chem.Geol., 85: 1-18.

Gill, J. B., 1981. Orogenic andesite and plate tectonics. Springer-Verlag, 390 pp.

Green, D.H., 1976. Experimental testing of “equilibrium†partial melting if peridotite under water-saturated, high pressure condition. Canadian Mineralogist, 14: 255-268.

Green, D.H., 1973. Experimental melting studies on model upper mantle composition at high pressure under water-saturated and water-understurated condition. Earth Planet. Sci. Lett., 19: 37-53.

Green, T.H., 1980. Island arc and continental building magmatism – A review of petrogenetic models based on experimental petrology and gochemistry, Tectonophysics, 63: 367-385.

Green, T.H. and Ringwood, A.E., 1968. Genesis of the calc-alkaline rocks suite. Contrib. Mineral. Petrol., 18: 105-162.

Grove, T.L. and Baker, M.B., 1984. Phase equilibria controls on the tholeiitic versus calc-alkaline differentiation trends. J. Geophys. Res., 89: 3253-3274.

Grove, T.L. and Kinzler, R.J., 1986. Petogenesis of andesites. Ann. Rev.Earth Planet., Sci. Lett., 14: 417-454.

Hart, S.R., 1988. Heterogenous mantle domains : signature, genesis and mixing chronologies. Earth Planet. Sci.Lett., 90: 273-296.

Hartono, U., 1994. Radiogenic and stable isotope data from the Wilis Volcanic Complex, East Jawa. J. Geology and Mineral Resources. GRDC, Bandung, v. IV, no. 39: 8 - 15.

Hartono, U., 1997. Petrogenesis of basaltic magmas from the Wilis volcano Eastern Sunda arc. Bulletin Geological Research and Development Centre, Bandung, Indonesia, no. 21: 39 - 62.

Hartono, U., 2009. Contribution of arc magmatism studies in early stage mineral exploration. J of Geological Resources., v. 19, No.5: 287-296.

Hartono, U., Dirk, M.H.J., Sanyoto, P. and Permanadewi, S., 1999. Geochemistry and K/Ar results of the Mesozoic-Cenozoic plutonic and volcanic rocks from the Meratus Range, South Kalimantan. GEOSEA '98 Proceedings, Geol. Soc. Malaysia Bull., 43 : 49 – 61.

Hartono, U. and Sulistyawan, R.I.H., 2010. Origin of Cretaceous high magnesian andesites from Southeast Kalimantan. J. of Geological Resources, v. 20, No.65: 261-276.

Hartono, U. and Suyono, 2006. Identification of adakite from the Sintang intrusives in West Kalimantan. J. of Geological Resources, v.XVI, No.3: 173-178.

Hatherton, T. and Dickinson, W.R., 1969. The relationship between andesitic volcanism and seismicity in Indonesia, the Lesser Antilles, and other island arcs. J. Geophys. Res., 74: 5301-5310.

Hildreth, W. and Moorbath, S., 1988. Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib. Mineral.Petrol., 98: 445-489.

Ito, E., White, W.M. and Gopel, C., 1987. The O,Sr,Nd and Pb isotope geochemistry of MORB. Chemical Geol., 62: 157-176.

Katili, J.A., 1975. Volcanism and plate tectonic in Indonesian island arcs. Tectonophysics, 26: 165-188.

Kay, R.W., 1978. Aleutian magnesian andesites: melts from subducted Pacific oceanic crust. J. Volcanol. Geotherm. Res., 4: 117 – 132

Kay, R.W.. and Kay, S.M.., 1993. Delamination and delamination magmatism. Tectonophysics, 217: 177-189.

Kay, S.M. and Mpodozis, C., 1999. Setting and origin of Miocene giant ore deposits in the Central Andes. Proceedings of Pacific Rim Congress '99, Bali, Indonesia 10-13 October, 1999, pp : 5-12.

Kelemen, P.B., Shimizu, N. and Dunn, T., 1993. Relative depletion of Nb in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/ rock reaction in the upper mantle Earth Planet. Sci.Lett., 120: 111-134.

Kuno, H., 1960. Hogh alumina basalts. J. Petrology, 1: 121 – 145.

Kuroda, N., Shiraki, K. and Urano, H., 1978. Boninite as possible calc-alkalic primary magma. Bull. Volcanol., 41: 563 - 575

Kushiro, I., 1972. Effect of water on the composition of magmas formed at high pressure. J. Petrology, vol. 13, part 2: 311-334.

Kay, R.W. and Kay, S.M.., 1993. Delamination and delamination magmatism. Tectonophysics, 217: 177-189.

Kay, S.M. and Mpodozis, C., 1999. Setting and origin of Miocene giant ore deposits in the Central Andes. Proceedings of Pacific Rim Congress '99, Bali, Indonesia 10-13 October, 1999, pp : 5-12.

McCulloh, M.T. and Gamble, J.A., 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet. Sci. Lett., 102: 358-374.

Morris, J.D. and Hart, S.R., 1983. Isotopic and incompatible element constrains on the genesis of island arc volcanics from Cold Bay and Amak island, Aelutians, and implication for mantle structure. Geochim. Cosmochim Acta, 47: 2015-2930.

Myers, J.D. Frost, C.D. and Angevine, C.L., 1986a. A test of quartz eclogite sources for parental Aleutian magmas: A mass balance approach. J. Geology, 94: 811-828.

Myers, J.D. Frost, C.D. and Angevine, C.L., 1986b. Geochemical and strontium isotopic characteristics of parental Aleutian arc magmas: evidence from the basaltic lavas of Atka. Contrib. Mineral. Petrol., 94: 1-11.

Mysen, B.O. and Boettcher, A.L., 1975. Melting of a hydrous mantle: II. Geochemistry of crystals and liquids formed by anatexis of mantle peridotite at high pressure and high temperature as a function of controlled activities of water, hydrogen and carbon dioxide. J. Petrology, 16: 549-593.

Nicholls, I.A., 1974. Liquids in equilibrium with peridotitic mineral assemblage at water pressures. Contrib. Mineral. Petrol., 45: 289-316.

Nicholls, I.A. and Ringwood, A.E., 1973. Effect of water on olivine stability in tholeiites and the production of silica-saturaed magmas in the islnd arc environment. J. Geol. Soc. London., 81: 285-300.

Osborn, E.F., 1969. The complementariness of organic andesite and Alpine peridotite. Gochim. Cosmochim. Acta, 33: 307-324.

Oxburgh, E.R. and Turcotte, , D.L., 1970. Thermal structure of island arcs. Geol. Soc. of American Bull., 81: 1665 – 1668.

Oyarzun, R., Mà rguez, A., Lillo, J., López, I. and Rivera, S., 2001.Giant versus small porphyry copper deposits of Cenozoica ge in northern Chile: adakite versus normal calac-alkaline magmatism. Mineralium deposita, 36: 794-798.

Peacock, S.M., Rushmer, T. and Thompson, A.B., 1994. Partial melting of subducted oceanic crust. Earth Planet. Sci. Lett., 121: 227-224.

Perfit, M.R., Gust, D.A., Bence, A.E., Arculis, R.J. and Taylor, S.R., 1980. Chemical characteristics of island arc basalts: implications for mantle sources. Chemical Geol., 30: 227-256.

Reagan, M.K. and Gill, J.B., 1989. Coexisting calc-alkaline and high-niobium basalts from Torralba volcano, Coata Rica: Implications for residual titanites in arc magma sources. J. Geophys. Res., 94 (B): 4619-4633.

Reich, M., Parada, M.A., Palacos, C., Dietrich, A., Schultz, F. and Lehman, B., 2003. Adakite-like signature of Late Miocene intrusions at the Los Pelambers giant porphyry copper deposit in the Andes of central Chile: metallogenic implications. Mineralium deposita, 38: 876-885.

Ringwood, A.E., 1977. Petrogenesis of island arc syatems. In: Talwani, M and Pitman III, W.C. (edts.), Island Arc, Deep Sea Trences and Back Arc Basins. Amer. Geophys. Union, 311-324.

Ringwood, A.E., 1975. Composition and petrology of earth's mantle. Mc. Graw-Hill, New York, N.Y., 618pp.

Ringwood, A.E., 1974. The petrological evolution of island arc systems. J. Geol. Soc. Lond., 130: 183-204.

Ringwood, A.E., 1966. The chemical composition of the earth, In: Advanced in the earth science (P.M. Hurley, ed.), M.I.T. Press., Cambridge Mass., 287 – 356.

Sato, K., 1977. Melting experiments on a systematic olivine lamproite composition up to 8 GPa: Implication to its petrogenesis. J. Geophys. Res., v. 102, no. B7: 14751-14764.

Stolz, A.J., Varne, R., Wheller, G.E., Foden, J.D. and Abbott, M.J., 1988. The geochemistry and petrogenesis of K-rich alkaline volcanics from the Batu Tara volcano, eastern Sunda arc. Contrib. Mineral. Petrol., 98: 374-389.

Stolz, A.J., Varne, R., Davies, G.R., Wheller, G.E. and Foden, J.D., 1990. Magma source components in an arc-continent collision zone: the Flores-Lembata sector, Sunda arc, Indonesia. Contrib. Mineral. Petrol., 105: 585-601.

Tatsumi, Y. and Ishizaki, K., 1982. Origin of high-Mg andesite I. Earth Planet. Sci. Lett., 60: 293-304.

Tatsumi, Y., Sakuyama, M., Fukuyama, H. and Kushiro, I., 1983. Generation of arc basalt magmas and thermal structure of mantle wedge in subduction zone, J. Geophys. Res., 88 : 5815-5825.

Tatsumi, Y., Hamilton, D.L. and Nesbit, R.W., 1986. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: evidence from high-pressure experiments and natural rocks. J. Volcanol. Geotherm. Res., 29: 293-309.

Tatsumi, Y., Murasaki, M., Arsadi, E.M. and Nohda, S., 1991. Geochemistrry of Quaternary lavas from NE Sulawesi: transfer of subduction components into the mantle wedge. Contrib. Mineral. Petrol., 107: 137-149.

Tosdal, R.M. and Richards, J.P., 2001. Magmatic and structural controls on the development of porphyry Cu ± Mo ± Au deposits. Rev. Econ. Geol., 14: 157-181.

Varne, R and Foden, J.D., 1986. Geochemical and isotopic systematics of Eastern Sunda arc volcanics: Implications for mantle sources and mantle mixing processes. In The origin of arc (F.C. Wezel, ed.). Elsevier, Amsterdam.

Wang, Q., Xu, J-Feng, Jian, P., Bao, Z-W., Zhao, Z-H., Li, C-F., Xiong, X-L. and Ma, J-L., 2006. Petrogenesis of adakitic porphyries in an extentional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization. J. Petrology, 47(1): 119-144.

Wheller, G.E., Varne, R., Foden, J.D. and Abbot, M.J., 1986. Geochemistry of Quaternary volcanism in the Sunda-Banda arc, Indonesia, and three component genesis of island arc basaltic magmas. J. Volcanol. Geotherm. Res., 32: 137-160.

Whitford, D.J., 1975. Strontium isotopic studies of the volcanic rocks of the Sunda arc, Indonesia and their petrogenetic implications. Geochim. Cosmochim. Acta, 39: 1287-1302.

Whitford, D.J. and Jezek, P.A., 1979. Origin of Late Cenozoic lavas from the Banda arc, Indonesia: Trace element and Sr isotope evidence. Contrib. Mineral. Petrol., 68: 141-150.

Whitford, D.J., White, W.M. and Jezek, P.A., 1981. Neodymium isotopic studies of Quaternary island arc lavas from Indonesia. Geochim. Cosmochim. Acta, 45: 989-995.

Whitford, D.J. and Jezek, P.A., 1982. Isotopic constraints on the role of subducted sialic material in Indonesian island-arc magmatism. Geol. Soc. Amer. Bull., 93: 504-513

Whitford, D.j., Foden, J.D. and Varne, R., 1978. Sr isotope geochemistry of calc-alkaline lavas from the Sunda arc in Lombok and Sumbawa, Indonesia. Carnegie Institution of Washington Yearbook, 77: 613-620.

Woodhead, J.D. 1988. The origin of geochemical variations in Mariana lavas: A general model for petrogenesis in intra oceanic island arc?. J. Petrol., 29: 805-830.

Woodhead, J. D., Eggins, S. and Gamble, J., 1993. High field strength elements and transition element systematics in island arc and back arc basin basalts. Earth Planet. Sci Lett., 114: 491-504.

Xu, J-Feng, Shinjo, R., Defant, M.J., Wang, Q. and Rapp, R.P., 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, v.30, no. 12: 1111-1114.

Yogodzinkski, G.M., Volinet, O.M., Koloskov, A.V., Seliverstonv, N.I. and Matvenkov, V.V., 1994. Magnesian andesites and subduction component in a strongly calc-alkaline series at Piip volcano, Far western Aleutians. J. Petrol., 35, part 1: 163-204.

Downloads

Published

2011-08-10