PENGARUH KEGIATAN TEKTONIK DAN GUNUNG API TERHADAP KARAKTERISTIK SEDIMENTOLOGI SEDIMEN NEOGEN AWAL DAERAH BAGIAN TENGAH CEKUNGAN SERAYU

S. Bachri

Pusat Survei Geologi Jl. Diponegoro 57, Bandung 40122

Sari

Batuan sedimen Neogen Awal di bagian tengah Cekungan Serayu memiliki karakteristik sedimentologi yang dapat membedakan antara satu satuan dengan satuan lainnya. Karakteristik tersebut meliputi nilai rata-rata empat variabel, yaitu (1) rasio pasir/lempung, (2) nilai rata-rata frekuensi lapisan, (3) nilai rata-rata rasio smektit terhadap kaolinit atau Sm/(Sm+Ko), serta (4) nilai rata-rata rasio kuarsa terhadap feldspar atau K/(K+F). Perbedaan nilai rata-rata keempat variabel tersebut terbukti merupakan implikasi dari perbedaan intensitas kegiatan tektonik dan gunung api. Nilai-nilai variabel tersebut menunjukkan adanya peningkatan pengaruh kegiatan tektonik yang diikuti peningkatan aktifitas gunung api, dari satuan batuan tua ke satuan yang lebih muda.

Kata kunci : karakteristik sedimentologi, kegiatan tektonik, kegiatan gunung api, Cekungan Serayu

Abstract

The Early Neogene sediments in the central part of the Serayu Basin have different sedimentological characteristics of one unit from the others. They comprise the mean value of four variables, i.e. (1) sand/shale ratio, (2) bed frequency, (3) smectite / kaolinite ratio or Sm/(Sm+Ko), and (4) quartz/feldspar ratio or K/(K+F). The difference of the mean value of those four variables represents implication of different intensities of tectonic and volcanism activities. The variable values suggest that there was increasing tectonic activity followed by increasing volcanic activity from older rock unit to younger unit.

Keywords: sedimentological characteristics, tectonic activity, volcanic activity, Serayu Basin

Pendahuluan

Latar Belakang

Daerah penelitian, Cekungan Serayu, terletak pada lajur busur gunung api Tersier dan Kuarter yang secara tektoniks juga sangat aktif sebagaimana ditunjukkan oleh adanya lajur tunjaman di sebelah selatan Jawa. Oleh karenanya, pembentukan sedimen selama Tersier, atau dalam hal ini dibatasi pada Neogen Awal, diyakini sangat dipengaruhi oleh kegiatan gunung api dan kegiatan tektonik.

Daerah penelitian terletak di bagian tengah Cekungan Serayu, yang secara fisiografis juga dikenal sebagai Pegunungan Serayu Utara, yang meliputi wilayah bagian barat Kabupaten Wonosobo, Kabupaten Banjarnegara, sampai bagian tenggara Kabupaten Pemalang (Gambar 1). Lokasi penelitian ini terletak dalam wilayah yang diliputi oleh dua lembar peta geologi skala 1:250.000 terbitan

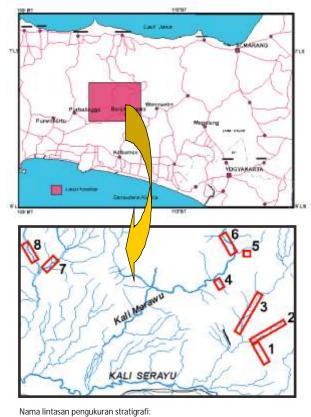
Naskah diterima: 20 Mei 2010 Revisi terakhir: 19 Agustus 2010 Direktorat Geologi (sekarang Badan Geologi), yaitu Lembar Banjarnegara dan Pekalongan (Condon drr., 1975) serta Lembar Purwokerto dan Tegal (Djuri, 1975).

Makalah ini akan mengungkap beberapa karakteristik sedimentologi satuan-satuan batuan sedimen Neogen Awal di Cekungan Serayu, serta menganalisis hubungannya dengan perkembangan kegiatan tektonik dan gunung api.

Metodologi

Penelitian ini dilakukan dengan melakukan pengukuran stratigrafi terperinci (skala 1:100) pada tiga satuan batuan sedimen Neogen Awal, mulai dari Anggota Batulumpur Formasi Merawu di bagian bawah, Anggota Batupasir Formasi Merawu di bagian tengah, dan Formasi Penyatan di bagian paling atas. Pada ketiga satuan batuan dilakukan penilaian rasio pasir/lempung serta frekuensi perubahan perlapisan pada setiap segmen tegak sepanjang 5 m untuk tiap segmennya. Pengukuran

rasio pasir/lempung dan frekuensi perlapisan dilakukan pada delapan belas segmen untuk masingmasing satuan batuan. Di samping itu, dilakukan pengambilan percontoh batuan untuk analisis laboratorium, berupa petrografi, paleontologi, serta defraksi sinar-X. Analisis defraksi sinar-X dilakukan untuk mendapatkan nilai rasio smektit terhadap kaolinit dan rasio kuarsa terhadap felspar.


Peran Variabel Karakteristik Sedimentologi

Pada penelitian ini akan digunakan empat variabel atau karakteristik sedimentologi sebagai respon terhadap kegiatan tektonik dan gunung api, yaitu (1) frekuensi perlapisan (2) rasio pasir/lempung, dan (3) rasio kolinit/smektit dan (4) rasio kuarsa/felspar. Peran keempat variabel tersebut dalam hubungannya dengan kegiatan tektonik dan gunung api adalah sebagai berikut:

Frekuensi perlapisan adalah jumlah perlapisan batuan tiap tebal segmen tertentu, dalam hal ini diambil tebal 5 m. Semakin stabil kondisi tektonik cekungan, semakin jarang terjadi perubahan fasies yang ditunjukkan oleh adanya perubahan perlapisan batuan. Oleh karenanya frekuensi perlapisan yang tinggi menunjukkan kegiatan tektonik yang tidak stabil atau aktif.

Rasio pasir/lempung menunjukkan tinggi rendahnya energi lingkungan pengendapan. Semakin tinggi energi lingkungan pengendapan, sedimen yang terbentuk akan semakin didominasi butiran kasar. Sebaliknya, semakin dominan batulempung berarti semakin rendah energi lingkungan pengendapannya, dan ini berkaitan langsung dengan kondisi lingkungan pengendapan. Seperti disebutkan oleh beberapa penulis (Catuneanu, 2002; Mitchum Jr., 1997), proses transgresi akan menghasilkan runtunan sedimen retrogradasional yang ditandai oleh penghalusan butir ke atas. Sebaliknya, proses regresi yang menyebabkan garis pantai bergeser ke arah laut, akan mengakibatkan perubahan fasies menjadi berbutir lebih kasar, sehingga rasio pasir / lempung menjadi tinggi. Peristiwa regresi dan transgresi terjadi sebagai akibat perubahan interaksi antara laju sedimentasi dan laju pengangkatan atau penurunan lokal, serta perubahan eustatik permukaan air laut.

Berbagai penelitian menunjukkan bahwa smektit merupakan salah satu karakteristik hasil ubahan atau lapukan debu vulkanik atau gelas vulkanik yang umum dijumpai pada tuf (Tribble dan Yeh, 1994;

3. Kali Tulis Kali Gebyugan 5. Bukit Karanglo 7. Kali Tengah 4. Kali Nyakalan Kali Worawari 6. Kali Merawu

Gambar 1. Peta lokasi daerah penelitian yang memperlihatkan lintasan pengamatan dan pengukuran stratigrafi.

8. Kali Bombong

Nelson, 2006). Sementara itu, Singer (1984) menyatakan bahwa kaolinit merupakan karakteristik hasil pelapukan kimia batuan beku di daerah tropis. Oleh Nelson (2006) dipertegas bahwa kaolinit terbentuk oleh pelapukan atau alterasi hidrotermal mineral-mineral aluminosilikat. Dengan demikian, batuan yang kaya akan felspar umumnya lapuk membentuk kaolinit. Untuk dapat membentuk kaolinit tersebut, ion-ion seperti Na, K dan Ca, Mg dan Fe harus terlebih dahulu mengalami proses pelarutan (leaching) atau alterasi. Proses leaching ini akan mudah berlangsung dalam kondisi pH rendah (kondisi asam). Oleh karenanya, batuan granitan yang bersifat asam dan kaya felspar merupakan sumber utama kaolinit. Dengan demikian, perbandingan antara kelimpahan mineral-mineral smektit terhadap kaolin dapat mengindikasikan perbandingan kelimpahan relatif batuan gunung api (khususnya tuf) terhadap batuan granitan sebagai batuan sumber kedua jenis mineral lempung tersebut. Dengan kata lain, semakin tinggi kandungan smektit dapat mengindikasikan semakin intensifnya kegiatan kegunung apian.

Rasio kuarsa/felspar mewakili rasio antara mineral stabil dan kurang stabil. Sebagaimana dikemukakan oleh Folk (1980) dan beberapa penulis lainnya, jenis mineral yang sangat tahan terhadap proses-proses fisika dan kimia dapat dipergunakan sebagai dasar penentuan kedewasaan (*maturity*) mineralogi, misal kuarsa. Semakin tinggi nilai rasio mineral stabil/ mineral kurang stabil menunjukkan kedewasaan mineralogi yang semakin tinggi. Semakin tinggi kedewasaan mineralogi batuan sedimen, semakin stabil kondisi tektoniknya (Folk, 1980).

Stratigrafi, Sedimentologi dan Petrografi

Batuan sedimen Neogen Awal di Cekungan Serayu terdiri atas Formasi Merawu yang berumur Miosen Awal – Miosen Tengah, yang secara tidak selaras ditindih oleh Formasi Penyatan yang berumur bagian atas Miosen Akhir – Pliosen Awal (Bachri drr., 2007; 2008).

Formasi Merawu sebagian besar merupakan endapan pasang surut, dan setempat di bagian bawah dijumpai endapan laut dangkal. Secara garis besar formasi ini dibagi menjadi dua anggota, yaitu batulumpur di bagian bawah (Gambar 2 dan 3) dan endapan batupasir di bagian atas (Gambar 4 dan 5). Baik pada anggota batulumpur maupun batupasir sering dijumpai struktur tulang ikan (herringbone) dan silang-siur dua arah yang mencirikan adanya arus bolak-balik yang menjadi penciri lingkungan pasang-surut.

Dua percontoh batulempung gampingan dari Kali Tulis mengandung foraminifera yang masing-masing menunjukkan umur N4-N113 dan N8-N9, sementara percontoh serupa dari Kali Bombong menunjukkan umur N8-N10, dan percontoh lainnya dari Kali Nyakalan menunjukkan umur N7-N10. Dengan demikian, umur formasi ini pada kisaran Miosen Awal – Miosen Tengah.

Formasi Penyatan merupakan endapan turbidit laut dalam (batial) yang dicirikan oleh berkembangnya struktur konvolut, dengan litologi pada satuan umumnya bersifat gampingan (Gambar 6 dan 7). Di samping batupasir dan batulempung, juga dijumpai napal dan sisipan batugamping tipis. Kandungan fosil pada dua percontoh batulempung gampingan dari Kali Keang menunjukkan umur N17-N18

(Miosen Akhir bagian atas – bagian bawah Pliosen Awal. Berdasarkan data paleontologi ini, maka diduga Formasi Penyatan terletak tidak selaras di atas Formasi Merawu.

Data petrografi menunjukkan bahwa sebagian batupasir pada ketiga satuan batuan yang diteliti ini mengandung gelas vulkanik serta fragmen batuan volkanik yang mengindikasikan adanya pengaruh kegiatan gunung api. Beberapa lapisan tipis berukuran beberapa milimeter berwarna putih kotor, lapuk dan lunak, yang dijumpai di Kali Tulis (Formasi Merawu) diduga merupakan tuf lapuk.

Secara lebih lengkap, stratigrafi Cekungan Serayu tersaji pada Tabel 1.

Gambar 2. Anggota batulumpur Formasi Merawu di Kali Tulis.

Gambar 3. Sisipan batupasir pada anggota batulumpur Formasi Merawu di Kali Tulis, terdapat struktur tulang ikan (herringbone structure).

Geo-Sciences

Gambar 4. Anggota batupasir Formasi Merawu di Kali Merawu.

Gambar 6. Singkapan perselingan batupasir dan batulempung, keduanya gampingan, pada Formasi Penyatan di Kali Keang.

Gambar 5. Anggota batupasir Formasi Merawu di bawah bendungan Kali Tulis.

Gambar 7. Struktur konvolut pada batupasir Formasi Pernyatan di Kali Keang.

Tabel 1. Korelasi Stratigrafi Daerah Cekungan Serayu

UMUR		Djuri (1975) Daerah Purwokerto- Tegal	Bemmeien (1937). Daerah	Condon dhr(1975) Daerah Banjar- negara	Condon drr(1996). Daerah Banjar- negara	Bachri dkk (2008) Daerah Banjarnegara - Purwokerto- Pemalang
HOLOSEN		Betuen Gunungspi Muda	Aluvium Batuan Gunungapi Muda	Aluvium Batuan Gunungapi	Aluvium, Elin.gn.api Sumbing, Sindoro, Dieng	Aluvium Bahvan Guriungapi Muda
-	PLISTOSEN	Fm.Linggopodo Fm.Ligung Atas	Brekal Lembah Serayu Jembangan	Jembangan Serayu	Endagal Bith. Gunungapi Undak Jembangan Knogota Bie	Jembangan
Ę	PLIOSEN	Fm Ligung Bawah Fm Kalibiuk Fm Tapak	Fm.Ligung Fm.Bodas	Fm.Ligung Fm.Bodas	Anggola Batta mir Ligurd vanta Em Damai Em Tapak Em Kalibiok	Fm. Daries Fm. Ligung Fm. Kalibius Fm. Tapak
	AKHIR	Fm.Kumbang Fm.Halang	Fm.Penyatan	Fm. Penyatan	Fm. Kumbang Fm.H	Batuan Gr.api Kumbang
MIOSEN	TENGAH	Fm.Rambatan	Fm.Mararasu	Fm. Merawu	Anggota Siguour	Anggota betupasir
M	AWAL	Fm.Pemali	Alas Fm Merawu	Batugamping Sigugur	Fm Rambatan Fm Ramb	
	OLIGOSEN			Batuan Paleogen	Fm. Totogan Begugemping Ed	Formasi Worawari
	EOSEN		Batuan Eosen Peg. Serayu Utari	Peg. Serayu Utara		
	PRA-TERSIER					

Nilai Rata-Rata Beberapa Variabel Karakteristik Sedimentologi

Rasio pasir/lempung

Sebagaimana terlihat pada Tabel 2, 3, dan 4, ratarata rasio pasir/lempung pada anggota batulumpur Formasi Merawu, anggota batupasir Formasi Merawu dan Formasi Penyatan adalah secara berturut-turut bernilai ,.165006262, 2,497967771, dan 0,463541504. Data ini menunjukkan bahwa anggota batulumpur yang diendapkan di lingkungan dataran lumpur memiliki energi lingkungan lebih kecil dibanding energi lingkungan dataran pasir tempat diendapkannya anggota batupasir. Di lain pihak, lingkungan pengendapan tempat pembentukan endapan turbidit Formasi Penyatan memiliki energi lingkungan lebih besar dibanding lingkungan pengendapan anggota batulumpur, namun lebih rendah dibanding lingkungan pengendapan anggota batupasir (Gambar 8).

Frekuensi perlapisan

Frekuensi lapisan diukur untuk setiap interval 5 m pada penampang stratigrafi terukur. Tiap satuan batuan diambil delapan belas percontoh pengukuran, atau jumlah tebal yang diukur tiap satuan adalah 5 m x 18, atau 90 m. Tiap lapisan yang mempunyai tebal minimal 10 cm dihitung satu lapisan, sementara lapisan yang tipis-tipis dilakukan penyederhanaan penghitungan, dengan cara setiap interval 10 cm yang terdiri atas`beberapa lapisan tipis-tipis dihitung satu lapisan. Pada Tabel 2,3, dan 4 terlihat bahwa rata-rata frekuensi perlapisan, yang mencirikan frekuensi terjadinya perubahan fasies secara vertikal, berturut mulai dari anggota batulumpur Formasi Merawu, anggota batupasir Formasi Merawu, dan Formasi Penyatan adalah 12, 25, dan 31. Hal ini menunjukkan semakin ke atas semakin sering terjadi perubahan fasies, atau menunjukkan semakin aktifnya kegiatan tektonik ke satuan litostratigrafi yang lebih muda (Gambar 9).

Rasio Sm/(Sm+Ko)

Berdasarkan nilai intensitas relatif pada analisis defraksi sinar-X, rasio antara smektit (Sm) terhadap kaolinit (Ko) dapat diformulasikan menjadi Sm/(Sm+Ko) yang ditunjukkan pada Tabel 5, 6, dan 7. Dari tabel tersebut tampak bahwa nilai rata-rata variabel ini untuk anggota batulumpur Formasi

Merawu, anggota batupasir Formasi Merawu, dan Formasi Penyatan masing-masing adalah 0,507577181, 0.541187928, dan 0,611012857. Data ini menunjukkan bahwa ke arah atas terjadi peningkatan kelimpahan smektit yang mengindikasikan semakin melimpahnya batuan gunung api sebagai batuan sumber smektit. Dengan kata lain, kegiatan gunung api juga meningkat ke arah atas atau ke arah muda (Gambar 10).

Rasio K/(K+F)

Berdasarkan nilai intensitas relatif pada analisis defraksi sinar-X, rasio antara kuarasa (Ku) terhadap felspar (F) dapat diformulasikan menjadi Ku/(Ku+F) yang ditunjukkan pada Tabel 5, 6, dan 7. Dari tabel tersebut tampak bahwa nilai rata-rata variabel ini untuk anggota batulumpur Formasi Merawu, anggota batupasir Formasi Merawu, dan Formasi Penyatan masing-masing adalah 0,09584382, 0,0875683, dan 0,074624064. Data ini menunjukkan bahwa ke arah atas kuarsa semakin sedikit dan felspar semakin melimpah. Hal ini mengindikasikan semakin rendahnya kedewasaan mineralogi batupasir, yang menunjukkan tektonik semakin tidak stabil ke arah atas atau ke arah umur muda (Gambar 11).

KESIMPULAN

Berdasarkan nilai rata-rata keempat variabel karakteristik sedimentologi tersebut di atas, dapat diambil kesimpulan sebagai berikut:

Satuan batuan sedimen Neogen Awal di Cekungan Serayu menunjukkan adanya pengaruh kegiatan tektonik yang semakin meningkat ke arah atas, sebagaimana ditunjukkan oleh meningkatnya nilai rata-rata frekuensi perlapisan batuan, serta semakin kecilnya rasio kuarsa (mineral stabil) terhadap felspar (mineral kurang stabil), yang berarti semakin rendahnya kedewasaan mineralogi batupasir. Meningkatnya kegiatan tektonik juga diikuti oleh meningkatnya kegiatan gunung api sebagaimana ditunjukkan oleh bertambahnya kelimpahan smektit yang bersumber dari batuan gunung api. Peningkatan kegiatan tektonik dan gunung api ke arah atas ternyata tidak selalu berkorelasi dengan meningkatnya energi lingkungan pengendapan yang dimanifestasikan oleh rasio sedimen kasar dan halus. Ini menunjukkan adanya faktor selain tektonik maupun gunung api yang berpengaruh terhadap energi lingkungan pengendapan.

Tabel 2. Ddata Rasio Pasir/Lempung dan Frekuensi Lapisan Pada Anggota Batulumpur Formasi Merawu

No.	Segmen	Totaltebal batupasir*(cm)	Total tebal batulempung*** (cm)	Sand/Clay ratio	Jumlah lapisan batupasir****	Jumlah lapisan batulempung****	Frekuensi (jumlah) lapisan batuan tiap segmen setebal 5 m
1	KT7	70	430	0.162790698	5	5	10
2	KT8	70	430	0.162790698	4	5	9
3	KT10	50	4.50	0.111111111	4	5	9
4	KT11	70	430	0.162790698	5	5	10
5	NYI	75	425	0.176470588	3	7	10
6	NY3	75	425	0.176470588	3	7	10
7	NY4	75	425	0.176470588	4	6	10
8	NY5	75	425	0.176470588	4	6	10
9	NY6	75	425	0.176470588	4	6	10
10	BB1	60	440	0.136363636	6	7	13
11	BB2	80	420	0.19047619	7	8	15
12	BB3	90	410	0.219512195	9	9	18
13	BB5	50	450	0.111111111	5	7	12
14	BB6	60	440	0.136363636	5	6	11
15	BB7	85	415	0.204819277	7	8	15
16	BB8	80	420	0.19047619	7	8	15
17	BB9	70	430	0.162790698	7	7	14
18	KG7	60	440	0.136363636	6	6	12
	Nilai rata- rata:			0.165006262			11.83333333 Dibulatkan: 12

^{*} Termasuk breksi, konglomerat, batuganping berukuran pasir atau lebih kasar.

Notasi segmen: KT = Kali Tulis, NY=Kali Nyakalan, BB= Kali Bombong, KG = Kali Gebyugan

Tabel 3. Data Rasio Pasir/Lempung Dan Frekuensi Lapisan Pada Anggota Batupasir Formasi Merawu

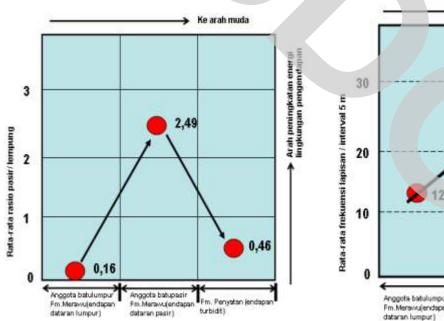
No.	Segmen	Total tebal hatupasir* (cm)	Tota tebal hatulempung** (cm)	Sand / clay Ratio	Jumlah lapisan patupasir	Jumlah lapisan patulempung	Frekuensi (jumlah) lap:san*** batuan per segmen
1	KT5	330	171	1 941 176 47	13	10	28
2	KT6	345	155	2.225806452	5	9	18
3	KT7	370	130	2.846153846	23	5	28
4	KT8	330	170	1.941176471	13	4	22
5		350	150	2.333333333	10	7	17
6	KL1	350	150	2.333333333	13	11	24
7	KL2	350	150	2.333333333	14	12	26
8	KL3	350	150	2.333333333	12	12	24
9	KL4	37.5	125	3	13	13	26
10	KL5	330	120	3.166666667	12	10	22
l1	KL7	310	160	2.125	16	15	31
12	KL8	350	140	2.571428571	17	13	30
13	KL9	340	160	2.125	13	13	26
14	KL10	340	160	2.125	17	14	31
15	KM1	370	130	2.846153846	15	7	22
16	KM2	365	135	2.703703704	22	6	28
17	KM3	370	130	2.846153846	14	б	20
18	KM4	380	127	3 166666667	14	5	19
	rata:			2.497967771			24 <i>.555555</i> 56
							Dibulatkan: 25

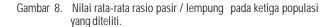
^{*}Termasuk breksi, konglomerat, batugamping berukuran pasir atau lebih kasar.

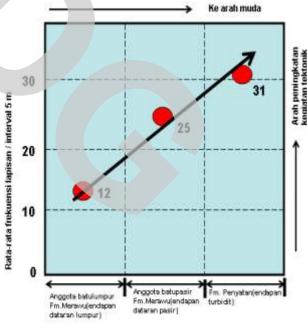
Notasi Segmen : KT = Kali Tengah, KL = Bukit Karanglo, KM = Kali Merawu

^{**} Termasuk batulanau dan napal.

^{****}Untuk lapisan tipis-tipis kurang dari 10 cm sampal perarian (laminasi) dilatung satu lapisan untuk tiap total tebal 10 cm


^{**} Termasuk batulanau dar. napal.


^{***}Untuk lapisan tipis-tipis kurang dari 10 cm sampai perarian (laminasi) dihitung satu lapisan untuk tiap total tebal 10 cm

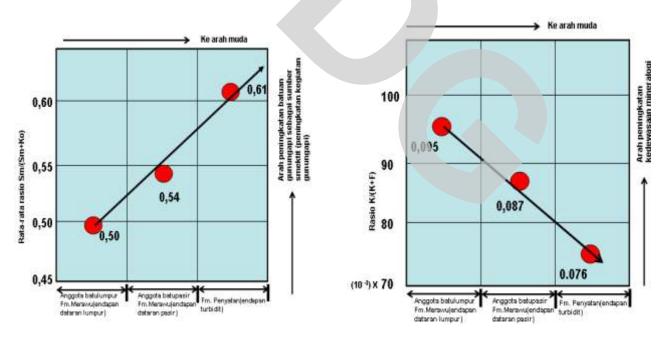

Tabel 4. Data Rasio Pasir/Lempung Dan Frekuensi Lapisan Pada Formasi Penyatan

No.	Segmen	Total tebal batupasir* (cm)	Total tebal batulempung** (cm)	Sand /Clay Ratio	Jumlah lapisan batupasir	Jumlah lapisan batulempung	Frekuensi (jumlah) lapisan tiap segmen setebal 5 m.
1	PL1	175	325	0.538461538	16	16	32
2	PL2	175	325	0.538461538	15	17	32
3	PL3	135	365	0.369863014	10	21	31
4	PL4	150	350	0.428571429	16	17	33
5	PL5	170	330	0.515151515	14	16	30
6	PL6	175	325	0.538461538	16	17	33
7	PL7	145	355	0.408450704	12	16	28
8	PL8	150	350	0.428571429	13	17	30
9	PL9	160	340	0.470588235	14	15	29
10	PL10	155	345	0.449275362	15	21	36
11	PL11	160	340	0.470588235	9	18	27
12	PL12	175	325	0.538461538	17	14	31
13	PL13	180	320	0.5625	16	14	30
14	PL14	150	350	0.428571429	14	16	30
15	PL15	150	350	0.428571429	12	19	31
16	PL16	130	370	0.351351351	11	18	29
17	PL17	155	345	0.449275362	14	17	31
18	PL18	150	350	0.428571429	14	17	31
	Nilai rata-rata:			0.463541504			30.7777778
							Dibulatkan 31

^{*} Termasuk breksi, konglomerat, batugamping berukuran pasir atau lebih kasar.

Gambar 9. Frekuensi lapisan yang meningkat dari tua ke muda pada ketiga populasi yang diteliti.

^{*} Iermasuk breksi, kongionera ausgaming 5
** Termasuk batulanau dan napal
***Untuk lapisan tipis-tipis kurang dari 10 cm sampai perarian (laminasi) dihitung satu lapisan untuk tiap total tebal 10 cm
Notasi Segmen


Tabel 5. Data Variabel Sm/ (Sm + Ko) dan K/ (K + F) pada Anggota Batulumpur Formasi Merawu

No	No.		Intensitas	Relatif (%)		Sm/(Sm+Ko)	K/(K+F)	
	Percontoh	Smektit (Sm)	Kaolinit (Ko)	Feldspar (F)	Kuarsa (K)	, ,		
1	08ED01B	8.99	10.83	100	8.61	0.45358224	0.079274468	
2	O8ED02B	12.4	9.96	91.98	12.39	0.554561717	0.118712274	
	08ED03B	16.04	8.77	100	9.27	0.646513503	0.084835728	
3	08ED04	9.18	12.13	100	13.15	0.43078367	0.116217411	
4	08ED05D	15.79	10.5	100	9.09	0.600608596	0.083325694	
5	08SB01B	14.95	10.14	100	11.63	0.595854922	0.104183463	
6	08SB03B	11.57	10.87	100	11.73	0.515597148	0.104985232	
7	08SB04B	13.1	9.76	100	8.53	0.573053368	0.07859578	
8	08SB05B	9.31	11.91	100	11.54	0.438737041	0.103460642	
9	08SB06B	8.73	11.69	100	8.23	0.427522037	0.076041763	
10	08SB10B	12.37	8.91	100	10.73	0.581296992	0.096902375	
11	08SB10F	12.36	8.9	100	10.05	0.581373471	0.091322126	
12	08SB18B	17.24	8.65	100	8.74	0.665894168	0.080375207	
13	08SB18D	7.26	11.5	100	11.1	0.386993603	0.099909991	
14	08SB19B	9.48	12.24	100	12.69	0.436464088	0.112609815	
15	08SB20	6.79	10.33	100	9.1	0.39661215	0.083409716	
16	08SB20B	9.53	8.39	100	12.94	0.531808036	0.11457411	
17	08SB20D	5.29	10.84	100	11.82	0.327960322	0.105705598	
18	08ED05E	9.97	10.02	100	9.48	0.498749375	0.086591158	
		Nilai Ra	ita-rata:		0.507577181	0.09584382		

Tabel 6. Data Variabel Sm/ (Sm+Ko) dan K/ (K+F) pada Anggota Batupasir Formasi Merawu

	No.		Intensitas	Relatif (%)			
No.	Percontoh	Smektit (Sm)	Kaolinit (Ko)	Feldspar (F)	Kuarsa (K)	Sm/(Sm+Ko)	K/(K+F)
1	08SB07B	8.11	5.54	100	6.68	0.594139194	0.062617173
2	08SB 07G	12.53	14.84	100	10.5	0.457800512	0.095022624
3	08SB07J	9.28	9.9	100	12.03	0.483837331	0.10738 951
4	08SB07J1	13	11.18	100	9.69	0.537634409	0.088339867
5	08SB07L	10.83	6.24	100	9.83	0.634446397	0.089501958
6	08SB07N1	15.81	8.03	100	10.2	0.663171141	0.092558984
7	08SB07N3	9.32	9.37	100	8.96	0.498662386	0.082232012
8	08SB07N5	10.34	8.27	100	10.01	0.555615261	0.090991728
9	08SB07N7	14.89	14.2	100	6.89	0.511859746	0.064458789
10	08SB07N9	13.4	12.73	100	7.67	0.512820513	0.071236185
11	08SB07N11	12.23	15.52	100	3.45	0.440720721	0.033349444
12	08SB07O1	6.19	9.25	100	8.61	0.400906736	0.079274468
13	08SB07R1	10.79	16.72	100	10.79	0.392221011	0.097391461
14	08SB07S1	14.55	9.12	100	13.94	0.614702155	0.122345094
15	08SB07U3	8.14	6.65	100	10.95	0.550371873	0.098693105
16	08SB07U5	14	13.26	100	11.11	0.513573001	0.099991
17	08SB08B	18.09	6.93	100	10.03	0.723021583	0.091156957
18	08SB08H	16.01	8.4	100	12.32	0.655878738	0.10968661
		Nilai Ra	ata-Rata	0.541187928	0.0875683		

			Intensitas	Relatif (%)				
No.	No. Percontoh	Smektit (Sm)	Kaolin (Ko)	Feldspar (F)	Kuarsa (K)	Sm/(Sm+Ko)	K/(K+F)	
1	08HP103C1	17.13	9.32	100	10.6	0.647637051	0.095840868	
2	08HP103H	12.79	9.56	100	6.45	0.572259508	0.060591827	
3	08HP103K	14.77	8.36	100	8.63	0.638564635	0.079443984	
4	08SB44A2	13.8	6.39	100	6	0.683506686	0.056603774	
5	08SB44B2	12.35	8.41	100	7.81	0.594894027	0.07244226	
6	08SB44B5	15.04	10.01	100	11.48	0.600399202	0.10297813	
7	08SB44C3	17.75	7.91	100	11.48	0.691738114	0.102978113	
8	08SB44E3	16.03	6.92	100	6.98	0.698474946	0.06524584	
9	08SB44F2	13.24	7.37	100	7.43	0.642406599	0.069161314	
10	. 08SB44H1	8.33	8.82	100	6.85	0.485714286	0.064108563	
11	08SB44K2	8.83	8.68	100	5.42	0.504283267	0.051413394	
12	08SB44O2	8.64	9.34	100	7.15	0.480533927	0.066728885	
13	08SB44P2	11.36	10.79	100	8.12	0.512866817	0.075101739	
14	08SB44R1	13.24	4.72	100	6.96	0.737193764	0.065071055	
15	08SB44T2	13	10.53	100	6.16	0.552486188	0.058025622	
16	08SB44U2	16.09	6.84	100	7.43	0.701700829	0.069161314	
17	08SB44V2	9.79	7.24	100	12.65	0.57486788	0.112294718	
18	08SB44C3-x	14.66	6.94	100	8.23	0.678703704	0.076041763	
		Nilai Rata	0.611012857	0.0746 24064				

Gambar 10. Nilai rata-rata rasio smektit – kaolinit yang meningkat ke arah muda pada ketiga populasi yang diteliti.

Gambar 11. Nilai rata-rata rasio kuarsa – felspar yang menurun ke arah muda pada ketiga populasi yang diteliti.

Ucapan Terima Kasih

Penulis mengucapkan terimakasih atas segala bentuk kerja sama selama pengambilan data di lapangan maupun laboratorium, serta berbagai diskusi selama penyusunan laporan penelitian ini, terutama kepada Dr. Surono, Dr. Hermes Panggabean, Ir. D. Agustiyanto, M.Phil, Edy Slameto, M.Sc., Indra Nurdiana, ST., Ir. Rachmansyah, Ir. Erwin Hariyanto Nugroho, Ir. Torkis Sihombing, Rachmat Fachruddin, ST. dan Rachmat Yantono Saragih, ST.

Acuan

- Bachri, S., Agustiyanto, D.A., Sihombing, & T., Hutubessy, S., 2007. Laporan Pendahuluan Penelitian Cekungan Paleogen Neogen Daerah Banjarnegara Purbalingga, Jawa Tengah. Pusat Survei Geologi, Bandung, tidak terbit.
- Bachri, S., Agustiyanto, D.A. & Slameto, E., 2008. Penelitian Evolusi Cekungan Paleogen Neogen Daerah Banjarnegara Purbalingga, Jawa Tengah. Laporan Akhir, Pusat Survei Geologi, Bandung, tidak terbit.
- Condon, W.H., Pardyanto, L., Samodra, H., Ketner, L., Amin, T.C., Gafoer, S., 1996. *Peta Geologi Lembar Banjarnegara dan Pekalongan, Skala 1:100.000*, Pusat Penelitian dan Pengembangan Geologi. Edisi 2.
- Condon, W.H., Pardiyanto, L. & Ketner, K.B., 1975. *Peta Geologi Lembar Banjarnegara dan Pekalongan, skala 1* : 100.000, Direktorat Geologi, Bandung.
- Catuneanu, O.,(2002). Sequence stratigraphy of clastic systems: concepts, merits, and pitfalls. Journal of African Earth Sciences, Volume 35, Issue 1:1-43. Djuri, 1975. *Peta Geologi Lembar Purwokerto dan Tegal, skala 1:100.000*. Direktorat Geologi, Bandung.
- Djuri, 1975 h.199. *Peta Geologi Lembar Purwokerto dan Tegal, Skala 1:100.000*. Direktorat Geologi, Bandung.
- Folk, R.L., 1980. Petrology of sedimentary rocks. Hemphill Publishing Company, Austin, Texas 78703.
- Mitchum Jr., R. M., (1977), Seismic Stratigraphy and Global Changes of Sea Level: Part 11. Glossary of Terms used in Seismic Stratigraphy: Section 2. Application of Seismic Reflection Configuration to Stratigraphic Interpretation, Memoir 26: 205-212.
- Nelson, S.A., 2006. *Clay Minerals*. http://74.6.146.127/search/cache?ei=U8&p=kaolinite+granitic+rocks&fr=slv8 us. 27 Agustus 2009.
- Singer, A., 1984. The paleoclimatic interpretation of clay minerals in sediments: a review. *Earth-Sci. Rev.*, 21:251-293.
- Tribble, J.S. & Yeh, H.W., 1994. Origin of smectite and illite-smectite in the Bardabos accretionary complex: Oxygen isotopic evidence. *Geology*, March 1994, v.22, no.3, p. 219-222.
- Van Bemmelen, R.W., 1937. *Toelichting bij Blad 66 (Karangkobar), Geol. Kaar van Java, 1 : 100.000*. Dienst Mijn Bouw Ned, Indie, Jakarta.