ORIGIN OF CRETACEOUS HIGH MAGNESIAN ANDESITES FROM SOUTHEAST KALIMANTAN
DOI:
https://doi.org/10.33332/jgsm.geologi.v20i5.178Abstract
High magnesian andesites are found in the Cretaceous Haruyan volcanics in Southeast Kalimantan. The rocks have Mg# 67 – 69, but low concentrations of Ni (44 – 60 ppm), Cr (37 – 411 ppm) and, except two samples of 95UH23C and 96UH23, ratios of Sr/ Y are also low. Geochemical and tectonic studies show that the high magnesian andesites were originated from a subduction zone-type magma similar to that of the most “normal†Haruyan volcanics. Two possible origins of the Cretaceous high magnesian andesites are proposed. First, melting of the mantle wedge above the slab to produce a basaltic magma followed by crystal fractionation, especially olivine and pyroxene, during magma ascent to the surface resulted in a derivative magma with low Ni and Cr concentrations. A collision between the pre-Mesozoic Paternoster platform (microcontinent ?) and the Sundaland continent in the Upper Cretaceous-Lower Miocene might cause the magma ascent to pool immediately in the lower crust-upper mantle boundary. The impending magma then reacts with hot mantle peridotite to produce the high magnesian andesites. Secondly, the high magnesian andesite may resulted from a reaction between silicic magma and hot mantle peridotite. The collision may also cause lower crust melting resulted in granitic magma (? The Hajawa Granite), which then reacts with hot mantle peridotite to produce the adakite-type high magnesian magma, such as samples 95UH23C and 96UH23.
Keywords : high magnesian andesites, Southeast Kalimantan, origin
Downloads
References
Amiruddin (in prep.). Chapter 3. Cretaceous Granitoid Magmatism (in : Magmatism in Kalimantan, U. Hartono, B.H. Harahap and Amiruddin, eds.). Centre for Geological Survey.
Carrol, M.R. and Wyllie, P.J., 1989. Experimental phase relations in the system tonalite-peridotite-H2O at 15 kb: implication for assimilation and differentiation processes near the crust-mantle bounadary. J. Petrol., 30: 1351-1382.
Cosky, B., Baxter, J., Crombie, S., Gordon, J. and Cribb, W., 2005. Potential formation of “hybrid†adakite magmas within the northern Oregon Cascadia subduction zone. Geological Society Abstract of America with Program, vol. 37, No. 7, p 308.
Crawford, A.J., Beccaluva, L. and Serri, G., 1981. Tectonomagmatic evolution of the west Phillipine-Mariana region and the origin of boninites. Earth planet. Sci. Lett., 54: 346-356.
Crawfrod, A.J., Falloon, T.J. and Eggins, S., 1987. The origin of island arc high-alumina basalts. Contrib. Mineral. Petrol., 97: 417-430.
Chung, S.L., Liu,D.Y., Ji, J., Chu, M.F., Lee, H.Y., Wen, D.j., Lo, C.H., Lee, T.Y., Qian, Q. and Zhang, Q., 2003. Adakite from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31: 1021-1024.
Danyushevsky, L., Falloon, T., and Crawford, A., 2006. Subduction-related magmatism at the southern tip of the North Fiji back arc basin. AESC, Melbourne, Australia:1- 8.
Darman, H. and Sidi, F.H. (eds), 2000. An Outline of the Geology of Indonesia. Indonesia Association of Geologists. 192 p.
Defant, M.J. and Drummond, M.S., 1990. Deviation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662-665.
Defant, M.J. and Kepezhinskas, P., 2001. Evidence suggests slab melting in arc magmas, EOS, vol. 82, No. 6.
Dirk, M.H.J. and Amiruddin (2009). Batuan Granitoid In: Evolusi Magmatic Kalimantan Selatan, Edisi 2 (U. Hartono, R. Sukamto, Surono and H. Panggabean, eds). Badan Geologi, Dept. ESDM.
Drummon, M.S. and Defant, M.J., 1990. A model for trondhjemite-tonatlite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J. Geophys. Res., 95 B13: 21503-21521.
Eggins, S.M., 1993. Origin and differentiation of picritic arc magmas, Ambae (Aoba), Vanuatau. Contrib. Mineral. Petrol., 114: 79-100.
Fisk, M.R., 1986. Basalt magma interaction with harzburgite and the formation of high magnesian andesites. J. Geophys. Res., 13: 476 – 470.
Fudali, R.F., 1965. Oxygen fugacities of basaltic and andesitic magmas. Geochem. Cosmochim. Acta., 29: 1063 – 1075.
Grove, T.L. and Kinzler, R.J., 1986. Petogenesis of andesites. Ann. Rev.Earth Planet., Sci. Lett., 14: 417-454.
Grove, T.L., Gerlach, D.C. and Sando, T.W., 1982, Origin of calc-alkaline series lavas at Medicine Lake volcano by fractionation, assimilation and mixing. Contrib. Mineral. Petrol., 80: 160-182.
Gurney, J.J. and Harte, B., 1980. Chemical variation in upper mantle nodules from Southern African kimberlites. Phil. Trans. R. Soc. London., A 297: 273-293.
Hartono, U., 1997. Petrologi batuan gunungapi dan ultrabasa daerah Pegunungan Meratus, Kalsel. Laboran Proyek Kajian dan Informasi Geologi Tematik, Puslitbang Geologi, Tahun Anggaran 1996/1997. Bandung (Tidak diterbitkan).
Hartono, U., 2003. The role of South Kalimantan Tertiary volcanics in gold mineralisation. Prosiding Forum Litbang ESDM, 2003: 175-186.
Hartono, U., 1994. The petrology and geochemistry of the Wilis and Lawu volcanoes East Java Indonesia. Universtity of Tasmania, Australia (Unpub. Ph.D thesis).
Hartono, U. and Suyono, 2006. Identification of adakite from the Sintang intrusives in West Kalimantan. J. of Geological Resources, v.XVI, No.3: 173-178.
Hartono, U., Dirks, M.H.J., Sanyoto, P. and Permanadewi, S., 1999. Geochemistry and K/Ar results of the Mesozoic-Cenozoic plutonic and volcanic rocks from the Meratus Range, South Kalimantan. GEOSEA '98 Proceedings Geol Soc Malaysia Bull. 45 December 1999: 49-61.
Hartono, U., Sanyoto, P., Abidin, H.Z., Permanadewi, S., Sunata, W., Dirk, M.H.J and Saefudin, I., 1997. Geochemical characteristics of the Cretaceous and Tertiary volcanics, South Kalimantan : Implication for the tectono-magmatic evolution. J. Geology and Mineral Resources. GRDC, Bandung, v. VII, no. 66: 2 - 10.
Heryanto, R. and Sanyoto, P., 1994. Peta Geologi Lembar Amuntai, Kalimantan, sekala 1 : 250.000. Pusat Penelitian dan Pengembangan Geologi, Bandung.
Kay, R.W., 1978. Aleutian magnesian andesites: melts from subducted Pacific oceanic crust. J. Volcanol. Geotherm. Res., 4: 117 – 132.
Kay, S.B. and Kay R.W., 1985. Aleutoan tholeiitic and calc-alkaline magma series I : The mafic phenocrysts. Contrib. Mineral Petrol., 90: 276-290.
Kelemen, P.B., 1995. Genesis of high-Mg andesites and the continental crust. Contrib. Mineral. Petrol., 120: 1-19.
Kelemen, P.B., 1990. Reaction between ultramafic rock and fractionating basaltic magma I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. J. Petrology, 31: 51 – 98.
Kelemen, P.B., 1986. Assimilation of ultramafic rock in subduction-related magmatic arcs. J. Geol., 94: 829 – 843.
Koolhoeven, W.C.B., 1935. Het primarire diamante vookomen in Z-Borneo. De Mijningenieur, 14: 138 – 144.
Krol, L.H., 1920. Geologische Schetkaart van Pulau Laut en Tanah Bume, Schaal 1 : 200,000. Jaarboek v.h. Mijnwezen in N.O.I.
Kuroda, N., Shiraki, K. and Urano, H. Boninite as possible calc-alkalic primary magma. Bull. Volcanol., 41: 563 – 575.
LeBass, M.J., Le Maitre, R.W., Streckeisen, A. and Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol., 27: 745 – 750.
Meijer, A., 1980. Primitive arc volcanism and boninite series: example from western Pacific arcs. SEATER Volume, Am. Geophys. Union : 269 – 282.
Nicholls, I.A., 1974. Liquids in equilibrium with peridotitic mineral assemblage at water pressures. Contrib. Mineral. Petrol., 45: 289-316.
Nicholls, I.A. and Ringwood, A.E., 1973. Effect of water on olivine stability in tholeiites and the production of silica-saturaed magmas in the islnd arc environment. J. Geol. Soc. London., 81: 285-300.
Norris, K. and Chappel, B.W., 1967. X-ray fluorescent spectrography. In: Zussman, J. (ed), Physical methods in determinative mineralogy. Academic press., 161-214.
Peacock, S.M., Rushmer, T. and Thompson, A.B., 1994. Partial melting of subducted oceanic crust. Earth Planet. Sci. Lett., 121: 227-224.
Petford, N. and Atherton, M., 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordilera Blanca Batholith, Peru. J. Petrology, 37: 1491-1521.
Perfit, M.R., Gust, D.A., Bence, A.E., Arculis, R.J. and Taylor, S.R., 1980. Chemical characteristics of island arc basalts: implications for mantle sources. Chemical Geol., 30: 227-256.
Permanadewi, S., Hartono, U. and Saifudin, I., 1996. Hasil pentarikhan K-Ar da jejak belah terhadap batuan gunungapi di daerah Pulau Laut: implikasinya terhadap evolusi magmatik Kalimantan Selatan. Geol. Min . Res., GRDC, v VI, No. 63: 10-16.
Robinson, P., Higgins, N.C. and Jenner, G.A., 1986. Determinatin of rare earth element, Yttrium and scandium in rocks by an ion exchange-X-ray fluorescence technique. Chemical Geol., 55: 121-137.
Roeder, P.L. and Emslie, R.F., 1970. Olivin-liquid equilibrium. Contrib. Mineral. Petrol., 29: 275-289.
Rustandi, E., Nila, E.S., Sanyoto, P. and Margono, U., 1995. Peta Geologi Lembar Kotabaru, Kalimantan, Sekala 1 : 250.000. Pusat Penelitian dan Pengembangan Geologi, Bandung.
Sato, K., 1977. Melting experiments on a systematic olivine lamproite composition up to 8 GPa: Implication to its petrogenesis. J. Geophys. Res., v. 102, no. B7: 14751-14764.
Sikumbang, N., 1986. Geology and tectonic of pre-Tertiary rocks in the Meratus Mountains, Southeast Kalimantan, Indonesia. Royal Holloway and Bedford New College, Universtity of London (Unpub. Ph.D thesis).
Sikumbang, N and Heryanto, R., 1994. Peta Geologi Lembar Banjarmasin, sekala 1 : 250.000. Pusat Penelitian dan Pengembangan Geologi, Bandung.
Sisson, T.W. and Grove, T.L., 1993. Experimental investigations of the role of H2O calc-alkaline differensiation and subduction zone magmatism. Contrib. Mineral. Petrol., 113: 143-116.
Sumarsono, P., 1984. Evolusi tektonik daerah Meratus dan seskitarnya, Kalimantan Tenggara. PPTMGB “LEMIGASâ€. (Unpub.) 20pp.
Supriatna, S., Jamal, B., Heryanto, R. and Sanyoto, P., 1994. Geological map of Indonesia, Banjarmasin sheet, scale 1 : 250.000. GRDC. Bandung.
Tatsumi, Y., 1982. Origin of high-Mg andesites in Setouchi volcanic belt, southwest Japan, II. Melting phase relation at high pressures. Earth Planet. Sci. Lett., 60: 305-317.
Tatsumi, Y., Sakuyama, M., Fukuyama, H. and Kushiro, I., 1983. Generation of arc basalt magmas and thermal structure of mantle wedge in subduction zone, J. Geophys. Res., 88 : 5815-5825.
Woodhead, J.D. 1988. The origin of geochemical variations in Mariana lavas: A general model for petrogenesis in intra oceanic island arc?. J. Petrol., 29: 805-830.
Yogodzinski,G.M. and Kelemen, P.B., 1998. Slab melting in the Aleutian: implication of an ion probe syudy of clinopyroxene in primitive adakite and basalt. Earth and Planet. Sci. Lett., 158: 53-65.
Yogodzinkski, G.M., Volinet, O.M., Koloskov, A.V., Seliverstonv, N.I. and Matvenkov, V.V., 1994. Magnesian andesites and subduction component in a strongly calc-alkaline series at Piip volcano, Far western Aleutians. J. Petrol., 35, part 1: 163-204.
Downloads
Published
Issue
Section
License
Authors who publish articles in Jurnal Geologi dan Sumberdaya Mineral (JGSM.Geologi) agree to the following terms:
- Authors retain copyright of the article and grant the journal right of first publication with the work simultaneously licensed under a CC-BY-NC or The Creative Commons Attribution–ShareAlike License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)