Comagmatic Andesite and Dacite in Mount Ijo, Kulonprogo: A Geochemistry Perspective

Authors

  • Ronaldo Irzon Pusat Survei Geologi

DOI:

https://doi.org/10.33332/jgsm.geologi.v19i4.185

Abstract

Mount Ijo is a Tertiarry vocano located in Kulonprogo, Yogyakarta Province. Andesite and dacite are the two volcanic rock units in Mount Ijo and around Kulonprogo. Dacite intruded andesite unit in Middle Miocene period. The two volcanic rock units are tried to be correlated based on geochemistry perspective. XRF were applied on major oxides measurements of selected eight samples while ICP-MS on trace and rare earth elements. Major oxides data of volcanic rocks arround Kulonprogo from previous studies are selected for additional data.The studied rocks are classified as basalt, basaltic andesite, andesite, and dacite based on their geochemistry contents. The studied samples show high degree of correlation in the Harker's Diagrams. Olivine and pyroxene fractionation together with ilmenite oxidation are most probably took place along magma differentiation. Alike patterns were also shown both in extended REE and REE spider diagrams. The comagmatic andesite and dacite is evidenced more by constant Rb/Sr ratio escalation through differentiation.


Keyword: andesite, dacite, geochemistry, magma differentiation, Kulonprogo

Downloads

Download data is not yet available.

References

Abdissalam, R., Bronto, S., Harijoko, A and Hendratno., 2009. Identifikasi Gunung Api Purba Karangtengah di Pegunungan Selatan, Wonogiri, Jawa Tengah. Jurnal Geologi Indonesia, v.4, no. 4:253-267.

Bayon, G., Barrat, J.A, Etoubleau, J., Benoit, M., Bollinger, C. and Revillon, S., 2009. Determination of Rare Earth Elements, Sc, Y, Zr, Ba, Hf and Th in Geological Samples by ICP­MS after Tm Addition and Alkaline Fusion. Geostandards and Geoanalytical Research, v.33, no.l :51 - 62.

Best, M.G. 2003. Igneous and Metamorphic Petrology, 2nd edition. Blackwell Science Ltd.

Bhagabaty, B., Mazumdar, M. K., Mazumdar, A. C. and Borah, P., 2017. Geochemical characteristics of Tukureswari and Barbhita granitoid in Goalpara district, Assam. Journal of the Geological Society of India, v.89(5): 532-540.

Bronto S., 2006. Fasies gunungapi dan aplikasinya. Jurnal Geologi Indonesia, v.l, no. 2:59-71.

Dempsey, S.R. 2013. Geochemistry of volcanic rocks from the Sunda Arc. Durham theses, Durham University.

Halliday, A.N., Davidson, J.P., Hildreth, W. and Holden, P. 1991. Modelling the petrogenesis of high Rb/Sr silicic magmas. Chemical Geology, v.92: 107-114.

Hartono, U., 1994. The Petrology and Geochemistry of the Wilis and Lawu Volcanoes, East Java, Indonesia. Thesis for Doctor of Philosophy (Geology) from University of Tasmania.

Harjanto, A, 2011. Vulkanostratigrafi di Daerah Kulonprogo dan Sekitarnya, Daerah Istimewa Yogyakarta Skala 1:100.000. Jurnal Ilmiah MTG, v.4, no.2.

Irzon, R. and Permanadewi, S., 2010. Metode ICP-MS untuk Studi Rare Earth Elements BatuanBeku di Daerah Kab. Kulonprogo dan Sekitarnya. The 39th IAGI Annual Convention and Exhibition, Lombok, Indonesia.

Irzon, R., Sendjaja, P., Kurnia, Imtihanah & Soebandrio, J. 2014. Kandungan Rare Earth Elements dalam Tailing Tambang Timah di Pulau Singkep. Jurnal Geologi dan Sumberdaya Mineral, v.l5, no.3:l43-l5l.

Irvine, T.N. and Baragar, W.R.A., 1971. A guide to the chemical classification of common volcanic rocks. Canadian Journal of Earth Sciences, v.8: 523-548.

Karnawati, D.S., Pramumijoyo, and Hendrayana, H., 2006. Geology of Yogyakarta, Java: The dynamic volcanic arc city. The 10th IAEG International Congress, Nottingham, United Kingdom. Paper number 363.

Maryanto, S. and Hasan, R., 2011. Korelasi-Regresi Antar parameter Petrofisika Batuan Beku dan Batugamping dari Daerah Pegunungan Kulonprogo, Daerah Istimewa Yogyakarta. Jurnal Geologi Indonesia, v.6, no.4:203-2ll.

Middlemost, E.AK., 1994. Naming materials in the magma/igneous rock system. Earth Science Review, v.37: 215-224.

Mohammed, F.H. and Hassanen, M.A, 1996. Geochemical evolution of arc-related mafic plutonism in Umm Naggat district, Eastern Desert of Egyprt. Journal of African Earth Science, v.22, no.3:269-283.

Nurwidyanto, 1.M., Kirbani, S.B., Sismanto, and Waluyo, 2014. Subsurface Modeling of Yogyakarta Basin Using Inversion Method of Gravity Data. International Journal of Geology, Earth & Environmental Sciences, v.4, no.3:289-295.

Pearce, J.A, and Cann, J.R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth and Planetary Science Letters, v.19: 290-300.

Pearce, J. A, 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe R.S. (ed.) Andesites: Orogenic Andesites and Related Rocks. John Wiley & Sons, Chichester: 525-548.

Peccerillo, R. and Taylor, S.R., 1976. Geochemistry of Eocene calc alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, v. 58: 63-8l.s

Rahardjo, W., Sukandarrumidi, &Rosidi, H.M.D. 2012. Geological Map of the Yogyakarta Sheet 1:1 00,000. Center for Geological Survei, Geological Agency.

Regassa, A, van Dae1e, K. de Paepe, P., Dumon, M. Deckers, J., Asrat, A and van Ranst, E., 2014. Characterizing weathering intensity and trends of geological materials in the Gilgel Gibe catchment, southwestern Ethiopia. Journal of African Earth Sciences, v. 99: 568- 580.

Rotolo, S.G. and Castorina, F., 1998. Transition from mildly-tholeiitic to calc-alkaline suite: the case of Chichontepec volcanic centre, El Salvador, Central America. Journal of Volcanology and Geothermal Research, v. 86:117-136.

Rubatto, D. and Hermann, J., 2003. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budget in subduction zones. Geochimica et Cosmochimica Acta, v.67(12): 2173-2187.

Subiyanto, 1989. Calk-alkaline Volcanic Rocks and Related Soils from West Progo, Yogyakarta (Java, Indonesia). Thesis, Rijksuniversiteit Gent International Training Centre for Post Graduate Soil Scientists, Gent.

Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, in Saunders, AD., and Norry, MJ., eds., Magmatism in the ocean basins: Geological Society of London Special Publication 42: 313- 345.

Syafri, I., Budiadi, E., and Sudradjat, A, 2013. Geotectonic Configuration of Kulon Pro go Area, Yogyakarta. Indonesian Journal of Geology, v.8, no 4:185-190.

Syafri, I., Sukiyah, E. and Hendarmawan., 2014. The Chemical and Mineralogical Characteristics of Quaternary Volcanic Rock Weathering Profile in the Southern Part of Bandung Area, West Java, Indonesia. International Journal of Science and Research, v.3, no.4:79-85

Takahashi, G., 2015. Sample preparation for X-ray fluorescence analysis: Pressed and loose powder methods. Rigaku Journal, v.31, no.1:26-30.

Tong, L., Jahn, B. M., Liu, X., Liang, X., Xu, Y. G. and Ionov, D., 2017. Ultramafic to mafic granulites from the Larsemann Hills, East Antarctica: Geochemistry and tectonic implications. Journal of Asian Earth Sciences, v.145: 679-690.

Verdiansyah, O. 2016. Perubahan Unsur Geokimia Batuan Hasil Alterasi Hidrotermal di Gunung Wungkal, Godean, Yogyakarta. Kurvatek, v.1, no.1 :55-67

Wijaya, D. R. P. and Hendratno, A, 2015. Petrogenesis Andesit Basaltik di Daerah Kali Wader dan Sekitamya, Kecamatan Bener, Kabupaten Purworejo, Provinsi Jawa Tengah. Proceeding Seminar Nasional Kebumian ke-5, Academia-Industry Linkage:53-64.

Yang, Z., Hou, Z., Chang, Z., Li, Q., Liu, Y., Qu, H., Sun, M., and Xu, B., 2016. Cospatial Eocene and Miocene granitoids from the Jiru Cu deposit in Tibet: petrogenesis and implications for the formation of collisional and postcollisional porphyry Cu systems in continental collision zones. Lithos, v.245: 243-257.

Downloads

Published

2018-11-05