CONTRIBUTION OF ARC MAGMATISM STUDIES IN EARLY STAGE MINERAL EXPLORATION

Authors

  • Udi Hartono Centre for Geological Survey

DOI:

https://doi.org/10.33332/jgsm.geologi.v19i5.213

Abstract

Indonesia contains at least 15 volcano-plutonic arcs with total length of approximately 9,000 km. The eight arcs contain known mineral deposits, while the rest may have mineral deposit prospects. The discovery of new mineral resources depends on research into the genesis of ore deposits and improved methods of finding them. In order to reduce a high exploration cost, knowledge of arc magma genesis is very important in mineral exploration before further study on mineral deposit genesis. Review on a number literatures suggests there is no linear correlation between potential porphyry-Cu/ epithermal mineralization and a single petrological/ geological factor. Mineral deposit formation is a product of interplay of magmatism, tectonics, volcanism, and fluid processes.

 

Keywords : arc magma genesis, ore deposits, exploration

Downloads

Download data is not yet available.

References

Brophy, J.G. and Marsh, B.D., 1986. On the origin of high alumina arc basalt and the mechanics of melt extraction. J. Petrology, v. Part 4 : 763-789.

Carlile, J.C. and Mitchell, A.H.G., 1994. Magmatic arc and associated gold and coper mineralisation in Indonesia. In: E.M. Cameron and others (editors), J. Geochemical. Exploration, 50: 91 – 142.

Chiaradia, M., Fontboté, L. and Beate, B., 2004. Cenozoic continental arc magmatism and associated mineralization in Ecuador. Mineralium Deposita, 39: 204-222.

Cosky, B., Baxter, J., Crombie, S., Gordon, J. and Cribb, W., 2005. Potential formation of “hybrid†adakite magmas within the northern Oregon Cascadia subduction zone. Geological Society Abstract of America with Program, v.37 (7): 308.

Crawford, A.J., Beccaluva, L. and Serri, G., 1981. Tectonomagmatic evolution of the west Phillipine-Mariana region and the origin of boninites. Earth planet. Sci. Lett., 54: 346-356.

Crawford, A.J., Fallon, T.J. and Egins, S., 1987. The origin of island arc high-alumina basalts. Contrib. Mineral. Petrol., 97: 417-430.

Davidson, J.P., 1987. Crustal-magma interactions and the evolution of arc magmas: The San Pedro-Pellado volcanic complex, Southern Chilean Andes. Geology, 15: 443-446.

Defant, M.J. and Drummond, M.S., 1990. Deviation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662-665.

Eggins, S.M., 1993. Origin and differentiation of picritic arc magmas, Ambae (Aoba), Vanuatau. Contrib. Mineral. Petrol., 114: 79-100.

Edward, Menzies, M.A., Thirwall, M.F., Morris, J.D., Leeman, W.P. and Harmon, R.S., 1994. The formation of potassic alkaline volcanism in island arc: The Ringgit-Beser Complex, E. Java, Indonesia. J. Petrology, 35, part 6: 1557-1595.

Falloon, T.J. and Green, D.H., 1986. Glass inclusions in magnesian olivine phenocrysts from Tonga: evidence for highly refractory parental magmas in the Tonga arc. Eart Planet. Sci. Lett., 81: 95-105.

Foden, J. D. and Green, D.H., 1992. Possible role of amphibole in the origin of andesite: some experimental and natural evidence. Contrib. Mineral. Petrol., 109: 479-493.

Gill, J. B., 1981. Orogenic andesite and plate tectonics. Springer-Verlag, 390 p.

Green, T.H. and Ringwood, A.E., 1968. Genesis of the calc-alkaline igneous rock suite. Contrib. Mineral Petrol., 18: 105-162.

Hamilton, W., 1979. Tectonic of the Indonesian Region. United State Geological Survey, Professional paper 1078 p.

Hartono, U., 1994. The Petrology and Geochemistry of the Wilis and Lawu Volcanics East Java Indonesia. Unpub. Phd Thesis. Univ. of Tasmania Australia.

Hartono, U., 2003a. The role of South Kalimantan Tertiary volcanics in gold mineralisation. Prosiding Forum Litbang ESDM, 175-186.

Hartono, U., 2003b. A geochemical study on the Plio-Pleistocene magmas from Kalimantan. Their influence to the Tertiary mineralization system in Kalimantan. Majalah Geologi Indonesia, v.18 (2): 168-174.

Hartono, U., 1997. Petrogenesis of basaltic magmas from the Wilis volcano Eastern Sunda arc. Bulletin Geological Research and Development Centre, Bandung, Indonesia, 21: 39 - 62.

Hartono, U., Dirk, M.H.J., Sanyoto, P. and Permanadewi, S., 1999. Geochemistry and K/Ar results of the Mesozoic-Cenozoic plutonic and volcanic rocks from the Meratus Range, South Kalimantan. GEOSEA'98 Proceedings, Geol. Soc. Malaysia Bull., 43: 49 – 61.

Hartono, U. and Suyono, 2006. Identification of adakite from the Sintang intrusives in West Kalimantan. Journal of Geological Resources, 16 (3) : 173-178.

Hatherton, T. and Dickinson, W.R., 1969. The relationship between volcanism and seismicity in Indonesia, the Lesser Antilles, and other island arcs. J. Geophys. Res., 74: 5301-5310.

Hickey-Vargas, R., Roa, H.M., Escobar, L.L. and Frey, F.A., 1989. Geochemical variations in Andean basaltic and silicic lavas from the Villarica-Lanin volcanic chain (39.5oS): An evaluation of source heterogeneity, fractional crystallization and crustal assimilation. Contrib. Mineral. Petrol., 103: 361-386.

Hildreth, W. and Moorbath, S., 1988. Crustal contribution to arc magmatism in Andes of Central Chile. Contrib. Mineral. Petrol., 98:455-489. Johnston, A.D., 1986. Anhydrous P_T relations of near-primary high-alumina basalt from the South Sandwich Islands. Contrib. Mineral.Petrol., 92: 368-382.

Katili, J.A., 1975. Volcanism and plate tectonic in Indonesian island arcs. Tectonophysics, 26: 165-188. Kay, S.M. nd Mpodozis, C., 1999. Setting and origin of Miocene giant ore deposits in the Central Andes. Proceedings of Pacific Rim Congress '99, Bali, Indonesia 10-13 October, 1999, pp : 5-12.

Kelemen, P.B., 1995. Genesis of high-Mg andesites and the continental crust. Contrib. Mineral. Petrol., 120: 1- 19.Marsh, B.D. and Carmichael, I.S.E., 1974. Benioff zone magmatism. J. Gephys. Res., 79: 1196-1206

Myer, J.D. Frost, C.D. and Angevine, C.L., 1986. A test of quartz eclogite sources for parental Aleutian magmas: A mass balance approach. J. Geology, 94: 811-828.

Nicholls, I.A., 1974. Liquids in equilibrium with peridotitic mineral assemblage at water pressures. Contrib. Mineral. Petrol., 45: 289-316.

Oyarzun, R., Mà rguez, A., Lillo, J., López, I. and Rivera, S., 2001.Giant versus small porphyry copper deposits of Cenozoica ge in northern Chile: adakite versus normal calac-alkaline magmatism. Mineralium deposita, 36: 794-798.

Peacock, S.M., Rushmer, T. and Thompson, A.B., 1994. Partial melting of subducted oceanic crust. Earth Planet. Sci. Lett., 121: 227-224.

Prouteau, G., Maury, R.C., Rangin, C., Suparka, E. and Bellon, H., 1996. Les adakites miocènes du NW de Bornéo, témoins de la fermeture de la proto-mer de Chine. C.R. Acad. Sci. Paris. T.323, serie IIa, p.925 a 932.

Reich, M., Parada, M.A., Palacios, C., Dietrich, A., Schult, F. and Lehmann,B., 2003. Adakite-like signature of Late Miocene intrusions at the LosPelambers giant porphyry copper deposit in thye Andes of central Chile: metalogenic implications. Mineralium deposita, 38: 876-885.

nd Sawkins, F.J., 1990. Metal deposits in relation to plate tectonics. 2 edn. Spinger, Berlin Heidelberg New York, 461 pp.

Sanyoto, P. dan Sukamto, R., 2000. Bab 7 Perkembangan tektonik. In: U. Hartono, R. Sukamto, Surono, H. Panggabean (editor), Evolusi Magmatik Kalimantan Selatan. Pub. Khusus Pusat Penelitian dan Pengembangan Geologi, No.23.

Sillitoe, R.H., 2000. Gold-rich porphyry deposits: descriptive and genetic models and their role in exploration and discovery. Rev. Econ. Geol., 13: 315-344.

Sisson, T.W. and Bronto, S., 1998. Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia. Nature, 39: 883-886.

Stern, C.R. and Kilian, R., 1996. Role of subducted slab, mantle wedge and continental crust in the generation of adkites from the Andean Austral Volcanic Zone. Contrib. Mineral. Petrol., 123: 263-281.

Stolz, A.J., Varne, R., Wheller, G.E., Foden, J.D. and Abbott, M.J., 1988. The geochemistry and petrogenesis of K-rich alkaline volcanics from the Batu Tara volcano, eastern Sunda arc. Contrib. Mineral. Petrol., 98: 374-389.

Tatsumi, Y., 1982. Origin of high-Mg andesite II. Melting phase relation at high pressures. Earth Planet. Sci. Lett., 60: 305-317.

Tatsumi, Y. and Ishiszaki, K., 1982. Origin of high-Mg andesite I. Petrographical and chemical characteristics. Earth Planet. Sci. Lett., 60: 293-304.

Tosdal, R.M. and Richards, J.P., 2001. Magmatic and structural controls on the development of porphyry Cu ± Mo ± Au deposits. Rev. Econ. Geol., 14: 157-181.

Varne, R., 1985. Ancient subcontinental mantel: A source for K-rich orogenic volcanics. Geology, v.13: 405- 408.

Varne, R and Foden, J.D., 1986. Geochemical and isotopic systematics of Eastern Sunda arc volcanics: Implications for mantle sources and mantle mixing processes. In: The origin of arc (F.C. Wezel, ed.). Elsevier, Amsterdam.

Woodhead, J.D. 1988. The origin of geochemical variations in Mariana lavas: A general model for petrogenesis in intra oceanic island arc?. J. Petrol., 29: 805-830.

Yogodzinkski, G.M., Volinet, O.M., Koloskov, A.V., Seliverstonv, N.I. and Matvenkov, V.V., 1994. Magnesian andesites and subduction component in a strongly calc-alkaline series at Piip volcano, Far western Aleutians. J. Petrol., 35, part 1: 163-204.

Downloads

Published

2009-10-10