IDENTIFIKASI GUNUNG API PURBA DI DAERAH SAPAYA, SULAWESI SELATAN PADA DATA INDERAAN JAUH

Sidarto dan U.Hartono
Pusat Survel Geolog
J. Diponegoro 57. Bandung 40122. E-mails contact@grdc essdm.gaid

Abstract

SARI Pada zaman Jersier, Lengan Selatan Pulau Sulawesi merupakan busur gunung apl yang batuannya ditunjukkan oleh Formasi Camba dengan sebaran yang cukup luas. Integrasi citra landsat dan citra IFSAR dapat memvisualisasi penampakan morfologi, batuan dan struktur gunung api, dan dapat digunakan untuk mengenali batuan gunung api purbà di daerah Sapaya dan sekitamya. Hasil interpretasi geologi pada citra tersebut mengidentifikasikan adanya dua gunung api purba, yaitu Gunung Api Sapaya dan Gunung Api Bantoloe. Gunung Api Sapaya yang berumur Mio-Pliosen memperiitatkan bentuk morfologi kerucut tererosi, yang tersusun oieh satuan breksi gunung api (fasies proksimal), satuan tuf (fasies medial), dan satuan konglomerat (fasies distal), sedangkan struktur gunung api yang terbentuk berupa kaldera, dan intrusi basal yang berpola menyebar: Gunung Api Bantoloe dicirikan oleh morfologi kerucut tererosi, dan batuan penyusunnya berupa breksi Gunung Api Bantoloe (fasies proksimal), lava Bantoloe (fasies pusa), dan diorit sebagai batuan intrusi dalam (fasies pusat). Gunung Api Sapaya mungkin dikontrol oleh tipe tunjaman Tethyan yang merupakan tumbukan antara beniua mikro yang berasal dari Australia dan Lempeng Benua Eurasia.

Kata kunci: Lengan Selatan Sulawesi, gunung api purba, Miosen Tengah•Piosen, citra landsat dan citra IFSAR.

Abstract

In Tertiary, the South Arm of Sulawesi Island is a volcanic arc represented by Camba Formation having a relatively wide distribution. Integration of fandsat and IFSAR images is sble to visualize volcanic morphological features, lithology and voicanic structures that are used to identify arcient volcanoes in Sapaya area and surroundings. The result of geological interpretation on the images indicated there were two ancient votcanoes in this area, involving Sapaya and Bantoloe Volcanoes. The Middle Miocene - Pliocene Sapaya Vorcano shows eroded cone feature, consisting of breccia volcanic (proximal facies), tuff (medial facies), and conglomerate (distal facies) units, and the volcanic structures are caldera, and radier intrusion basaits; while the Piliceene Bantoloe Volcano is identified by an eroded cone morphology, consisting of volcanic breccia of Bantoloe (proximal facies), lava Bantaloe (central fasies), and dionite showing a deep seated intrusion (central facies). The Sapaya Voicano might be controlled by Ittyyan type subduction showing a collision between micro continental which is part of Australian Continent and Eurasian Continent Plates.

Keywords: South Arm Sulawesi, morphology, lithology, wolcanic structure, ancient volcanoes, landsat and IFSAR images

PENDAHULUAN

Secara geografis Pulau Sulawesi terletak di tengah Kepulauan Indonesia. Posisi ini mengakibatkan kondisi geologi pulau ini sangat kompleks karena pulau ini dipengaruhi oleh aktivitas tiga lempeng aktif dunia, yaitu Lempeng Samudera Pasifik, Lempeng Hindia-Australia, dan Lempeng Eurasia. Namun kerumitan ini dapat diterangkan dengan teorí tektonik (Sukamto, 1975) menurut Simandjutak (1993) secara tektonostratigrafis Pulau Sulawesi dan sekitarnya dibagi menjadi lima mintakat geologi. Salah satunya adalah Busur Magmatik Tersier Sulawesi Barat yang membentuk Lengan Selatan

[^0]Sulawesi, dan disebut juga sebagai Busur Gunung Api Sulawesi Barat (Surono, 1998). Pada Geologi Lembar Ujungpandang, Benteng, dan Sinjai (Sukamto dan Supriatna, 1982) dan Geologi Lembar Pangkajene (Sukamto, 1982), batuan gunung api yang berumur Tersier ditunjukkan oleh Formasi Camba. Formasi ini terdiri atas batuan sedimen laut berselingan dengan batuan gunung api yang sebarannya sangat luas dan tidak merata. Berdasarkan sebarannya, gunung api yang memproduksi batuan tersebut diperkirakan suatu gunung api yang cukup besar, atau terdiri atas banyak gunung api. Sampai sekarang belum ada penelitian atau publikasi yang membahas keberadaan gunung api Tersier tersebut. Tulisan ini
mengidentifikasi keberadaan gunung api purba yang merupakan salah satu gunung api Tersier berdasarkan analisis pada data inderaan jauh, dan pemeriksaan lapangan terbatas (ground check).

Lokasi daerah Penelitian

Daerah Sapaya dan sekitarnya secara kepamongprajaan termasuk Kabupaten Takalar, Kabupaten Jinipontro, dan Kabupaten Goa, Provinsi Sulawesi Selatan. Secara geografi daerah penelitian terletak antara $5^{\circ} 15^{\prime}-5^{\circ} 30^{\prime} \mathrm{LS}$, dan $119^{\circ} 30^{\circ}$ $119^{\circ} 45^{\prime} 8 \mathrm{~B}$, sedangkan pada peta indeks. rupa bumi skala 1 : 50.000 Bakosurtanal terletak pada Lembar Sapaya (Gambar 1).

Metodologi

Penelitian ini dilakukan dengan analisis data inderaan jauh, dan disertai pemerian lapangan terbatas. Citra inderaan jauh yang digunakan terdiri atas citra landsat ETM $7+$, dan citra Interferremetry Syntetic Aperture Radar (IFSAR). Data inderaan jauh tersebut dimanipulasi dan digabungkan menjadi satu tampilan citra terintegrasi (Gambar 2) yang dapat memberikan informasi geologi secara optimal. Interpretasi geologi yang menghasilkan beberapa satuan morfologi, batuan, dan struktur geologi dilakukan secara manual pada layar komputer. Hasil interpretasi awal ini digunakan sebagai penunjuk dan perencanaan pengecekan lapangan. Peta geologi yang dihasilkan dievaluasi untuk membahas tujuan penelitian ini.

DASAR TEORI

Gunung api adalah tempat atau bukaan yang menjadi titik awal bagi magma dan gas untuk keluar dari permukaan bumi; dan produknya menumpuk di sekitar bukaan tersebut membentuk bukit atau gunung (Macdonald,1972). Bentuk gunung api modern pada umumnya membentuk morfologi kerucut, dengan lereng simetris, kelerengannya mengecil ke arah kaki gunung, akan tetapi bentuk gunung api purba bentuknya tidak ideal lagi karena gunung api ini telah mengalami ledakan yang dahsyat dan proses erosit tingkat lanjut (Hartono dan Satri, 2007). Ledakan ini biasanya menghasilkan. suatu kaldera yang bentuknya melingkar. Williams \& MacBimey (1979) dan Vessel \& Davies (1981) membagi batuan gunung api ke dalam empat
litofasies, yaitu: 1. Fasies sentral yang terdiri atas kubah lava, tubuh-tubuh intrusi dangkal (radial dikes, dike swarms, sills, cryptodomes, volcanic necks), batyan/mineral alterasi epitermal dan hidrotermal, berbagai xenolith batuan beku, batuan metasedimen-metamorf, dan breksi autoklastika pada bagian atas atau luar tubuh intrusi dangkal; 2. Fasies proksimal yang terdiri atas aliran lava, breksi/ aglomerat jatuhan pirohiastika dan breksi/ aglomerat aliran pirokiastika; 3. Fasies medial terdiri atas tuf lapilf baik jatuhan maupun aliran piroklastika, tuf dan breksi lahar; 4. Fasies distal terdiri atas batuan gunung api hasil pengerjaan ulang yang terdiri atas breksi lahar, konglomerat, batupasir, batulanau, dan batulempung.
Bentang alam gunung api dipengaruhi oleh dorongan ke atas dari magma, yang berfungsi sebagai gaya utama vertikal. Pembentukan ini mirip dengan terjadinya dome yang bersifat melingkar yang sesuai hasil percobaan Withajack dan Sceiner (1982), Percobaan ini menggunakan lempung dengan gaya tutama vertikal (tanpa gaya kompresi dan gaya regangan), dan hasilnya menunjukan bahwa struktur dome yang terbentuk disertai sesar normal yang berpola radial. Penampakan kelurusan yang menyebar terhadap suatu gunung api merupakan struktur yang diaklbatkan oleh munculnya gunung api tersebut, sehingsa pola struktur ini dapat digunakan untuk mengidentifikasi keberadaan suatu gunung api.

GEOLOGI REGIONAL

Pada peta geologi sistematik Indonesia skala $1: 250.000$, daerah penelitian termasuk dalam Peta Geologi Lembar Ujungpandang, Benteng dan Sinjai (Suikamto dan Supriatna, 1982). Batuan tertua yang tersinghap adalah batuan malihan yang berumur Kapur, Batuan malihan ini ditindih secara tidak selaras oleh Formasi Marada yang merupakan sedimen tlysch dan berumur Kapur Atas. Batuan gunung api terpropilitkan yang berumur Paleogen (Sukamto, 1982) menindih secara tidak selaras
sedimen flysch tersebut. Formasi Salo Kalumpang yang berumur Eosen Awal - Oligosen Akhir merupakan fasies sedimen laut dan menindih secara tidak selaras batuan gunung api terpropilitkan. Sementara Formasi Salo Kalumpang diendapkan di sebelah timur Lembah Walanae, sedanghtan di bagian barat diendapkan Formasi Tonasa yang berumur Eosen Akhir - Miosen Tengah. Formasi Camba yang tersusun oleh batuan sedimen laut berselingan dengan klastika gunung api yang menyamping beralih menjadi batuan gunung api dan berumur Miosen Tengah sampal Pliosen menumpang
secara tidak selaras di atas Formasi Tonasa. Formasi Walanae yang berumur Miosen Akhir - Pliosen berhubungan menjemari dengan Formasi Camba bagian atas. Selama masa Pliosen diduga terjadi aktivitas gunung api secara setempat yang menyusun batuan gunung api Baturabe-Cindako; dan batuan gunung api termuda adalah batuan gunung api Lampobatang yang berumur Pleistosen.

GEOLOGI DAERAH PENELTIAN

Geomorfologi

Geomorfologi daerah penelitian dapat dibagi menjadi sepuluh satuan, yaitu Pegunungan breksi melingkar, Pegunungan tuf, Gunung Api Bantoloe, Pegunungan diorit Bantoloe, Perbukitan bergelombang breksi, Perbukitan breksi dan tuf, Lereng Gunung * Api Lampobatang. Perbukitan konglomerat, Dataran bergelombang konglomerat, dan dataran aluvium (Gambar 3),

- Perbukitan breksimelingkar

Sebaran satuan ini melingkar, membentuk pegunungan dengan lereng terjal. Bagian dalamnya membentuk tebing terjal yang diduga suatu kaldera. Pola aliran menunjukkan pola memancar dengan lembah berbentuk V, sedangkan di bagian utara berkembang dua sungai besar. Keberadaan sungaliini kemungkinan dikontrol oleh terbentuknya Gunung Api Lampobatang yang lebih muda yang terletak di sebelah timur daerah penelitian. Batuan penyusun satuan morfologi ini adalah satuan breksi gunung api.

- Pegunungantuf

Satuan ini berkembang di bagian utara dan membentuk morfologi perbukitan yang membentuk hog back miring ke utara dengan puncak tumpul. Pola aliran subparalel, dengan kerapatan sedang, dan sungai membentuk lembah agak lebar. Batuan penyusunnya terdiri atas tuf dengan sisipan breksi gunung api dengan kemiringan periapisan ke arah utara. Pada umumnya satuan ini ditutupi oleh hutan, namun sebagian telah berubah menjadi perkebunan.

- Gunung Api Bantoloe

Morfologi ini sebarannya melingkar, berkembang di dalam Kaldera Gunung Api Sapaya, dan membentuk morfologi pegunungan dengan puncak-puncak meruncing. Sebaran ke arah tenggara relatif pendek, namun di bagian tengah merendah yang diduga pusat erupsi. Pola aliran menunjukkan menyebar
(radial), namun sungai utamanya (Sungai Dinging) sudah berkelok-kelok, membentuk lembah U , dan mengalir ke arah barat, sedangkan bentuk lembah sungai-5ungai kecil pada umumnya membentuk V, dan dalam. Batuan penyusunnya terdifi atas satuan breksi dan satuan lava Gunung Api Bantoloe. Tumbuhan penutupnya berupa hutan, namun di beberapa tempat terdiri atas permukiman dan pertanian,

- Pegunungan diorit Bantoloe

Satuan ini berkembang menonjol di dalam (pusat) satuan pegunungan Gunung Api Bantoloe. Morfologi ini berbentuk tonjolan yang membulat dengan lereng terjal, pola aliran menyebar, dengan bentuk lembah sempit dan dangkal. Batuan penyusunnya terdiri atas diorit, yang merupakan batuan beku dalam. Tumbuhan penutupnya adalah hutan primer.

- Perbukitan bergelombang breksi

Secara umum satuan ini membentuk morfologi perbukitan yang mengelombang, dengan puncak tumpul sampai runcing, dan berkembang di bagian baratdaya daerah penelitian, Pola alirannya membentuk pola sub paralel, dengan lembah agak tebar dan dangkal. Batuan penyusunnya terdiri atas breksi gunung api, dan setempat terdapat tuf berlapis. Pada umumnya satuan ini telah digunakan untuk lahan pertanian (ladang, sawah), dan setempat untuk permukiman.

- Perbuktan breksi dan tuf

Satuar ini dijumpai di utara bagian tengah di sekitar Dam Bili-bili. Morfologi berupa perbukitan dengan lereng cukup terjal, di bagian barat dam, puncaknya tumpul yang disusun oleh tuf, sedangkan di bagian timur dam puncaknya meruncing dan tersusun oleh breksi gunung api. Pada umumnya morfologi ini ditutupi oleh hutan primer, sedangkan di bagian barat sudah banyak digunakan untuk perkebunan, dan ladang.

- Lereng Gunung Api Lampobatang

Satuan ini hanya terdapat di tepi timur bagian tengah, dengan pola aliran sejajar, dan lereng cukup terjal. Morfologi ini merupakan bagian dari Gunung Api Lampobatang yang berkembang di sebelah timur daerah penelitian. Batuan penyusunnya adalah satuan breksi Gunung Api Lampobatang. Satuan ini ditutupi hutan lebat, namun sebagian telah berubah sebagai lahan pertanian.

Gambar 3. Peta geomorologi daernt Sypaya dan sekitarnya ditalsir pada citra.

- Dataran bergelombang konglomerat

Morfologi ini berkembang di bagian barat sampal barat laut daerah penelitian, dan membentuk topografi dataran bergelombang. Pola aliran yang berkembang adalah subparallel. Batuan penyusunnya adalah satuan konglomerat. Tutupan lahannya terdiri atas permukiman, persawahan irigasi, ladang, perkebunan, dan sebagian masih merupakan hutan alang-alang.

- Dataran aluvium

Dataran ini berkembang di lembah Sungai Berang. dan perpotongannya dengan Sungai Taka. Sebagian dataran ini yang merupakan bagian dari Lembah Sungai Berang telah berubah menjadi danau, akibat sungai dibendung. Batuan penyusunnya terdiri atas aluvium.

Batuan

Berdasarkan interpretasi geologi dan pengecekan lapangan, batuan daerah penelitian dapat dibagi menjadi sebelas satuan batuan (Gambar 4 dan

Gambar 5), yaitu: Satuan batugamping (Sb), Satuan breksi gunung api (Vbs), Satuan tuf (VIs), Satuan konglomerat (Sk), Satuan basal (b), Satuan điorit (d), Satuan breksi Gunung Api Bantoloe (Vbb), Satuan lava Gunuing Api Bantoloe (VIb), Satuan Diorit Bantoloe (db), Satuan breksi Gunung Api Lampobatang (Vol), dan Endapan Aluvium (Qa).

- Satuan batugamping (Sb)

Satuan batugamping dijumpal di bagian selatan, sebarannya tidak luas, namun di selatan daerah penelitian sebarannya cukup luas. Satuan ini membentuk morfologi dataran, yang ditutupi oleh sawah dan ladang. Dataran ini diduga merupakan sisa penambangan batugamping untuk industri pembuatan semen. Batuannya tersusun oleh batugamping berlapis (Gambar 6) dan batugamping terumbu. Sebaran batugamping ini tidak luas, dan dijumpai dalam satuan breksi gunung api (Vbs). Di bagian utara juga dijumpai satuan ini yang juga dalam satuan breksi gunung api, namun tidak terpetakan. Satuan ini diduga sebagai xenolit, sehingga umur batugamping ini diperkirakan lebih

Geo-Sciences

tua dari breksi gunung api, dan dapat disebandingkan dengan Formasi Tonasa yang berumur Eosen Akhir - Miosen Tengah (Sukamto dan Supriatna, 1982), yang ditindih secara tidak selaras oleh Formasi Camba.

- Satuan breksi gunung api (Vbs)

Sebaran satuan ini cukup luas, dan membentuk lingkaran, namun di bagian tengahnya membentuk lereng terjal yang diduga sebagai bekas kawah. Morfologi yang terbentuk adalah perbukitan pegunungan dan pada umumnya digunakan sebagai ladang. Batuannya tersusun oleh breksi (Gambar 7), setempat terdapat sisipan tuf dan lava andesit. Breksi bersifat sangat masif, keras, ukuran fragmen kerikil sampai bongkah yang berbentuk meruncing sampai agak membulat, sortasi sangat jelek. Fragmen terdiri atas andesit, dan matriksnya tuf kasar sampai lapili, Tut tersusun oleh perselingan tuf pasiran dan tuf lempungan (Gambar 8). Satuan breksi ini menunjukkan struktur masif, sangat keras, fragmen dan matriks sangat erat hubungannya, matriks terdiri atas tuf - lapill, dan dijumpai adanya xenolit batugamping (batuan yang lebih tua), Berdasarkan penampakan tersebut batuan ini diduga merupakan breksi aliran piroklastika yang merupakan batuan gunung api primer. Satuan ini berhubungan menjemari dengan satuan tuf, batas dengan breksi Gunung Api Batoloe berupa bekas kawah, dan dapat disebandingkan dengan Formasi Camba (Sukamto dan Supriatna, 1982).

- Satuan tuf (Vts)

Singkapan satuan ini dijumpal di bagian utara daerah penelitian dan di bagian barat daya, namun sebarannya tidak terpetakan. Satuan ini membentuk morfologi perbukitan dengan puncak tumpul, dan pada umumnya ditutupi oleh hutan, perkebunan, dan ladang, Batuan penyusunnya terdiri atas tuf dengan sisipan breksi gunung api. Tuf tersusun oleh perselingan tuf pasiran dan tuf lempungan (Gambar 9). Tuf ini bersifat ringan, lunak, wama keabuan, sedangkan dalam keadaan lapuk berwarna coklat kekuningan, butiran meruncing dan struktur gradasi mengecil ke arah atas. Sisipan breksi dicirikan masif, ukuran fragmen kerikil sampai bongkah, sortasi buruk. Fragmen terdiri atas andesit, masit, warna keabuan, mineral penyusunnya piroksin, biotit dalam massa dasar felspar. Satuan tuf ini dicirikan oleh sifat ringan, bentuk kristalnya meruncing, tidak mengandung fragmen atau material sedimen, adanya
struktur gradasi (lapili - tuf pasiran - tuf lempungan) menunjukkan pengendapannya didasarkan gravitasi yang berukuran besar mengendap lebih dulu, adanya perlapisan menunjukkan terjadi perulangan, dan dijumpai sisipan satuan breksi yang merupakan aglomerat aliran piroklastika. Berdasarkan ciri-ciri tersebut satuan ini diduga merupakan endapan piroklastika jatuhan. Satuan ini berhubungan menjemari dengan satuan breksi gunung api, dan diterobos oleh satuan diorit dan basai.

- Satuan konglomerat (Sk)

Sebaran satuan ini terdapat di bagian barat dan utara daerah penelitian. Di bagian utara membentuk morfologi perbukitan, sedangkan di bagian barat membentuk dataran. Di bagian utara tersusun oleh batupasir tufan dengan sisipan konglomerat (Gambar 10), sedanghan di bagian barat terdirl atas konglomerat (Gambar 11) dengan sisipan batupasir tufan (Gambar 12). Adanya sisipan kongiomerat di utara yang bersifat lensa diduga merupakan channel, sehingga satuan ini diduga diendapkan oleh media ait, Fragmen umumnya membulat menunjukkan bahwa satuan ini merupakan hasil rombakan, dan sudah mengalami transportasi. Adanya material tufan menunjukkan batuan asalnya batuan gunung api. Berdasarkan ciri-ciri tersebut, satuan konglomerat ini merupakan hasil rombakan batuan gunung api yang sudah terbawa oleh media air. Satuan ini menindih secara tidak selaras satuan breksi gunung apl, dan satuan tuf, serta diterobos oleh basal dan diorit.

- Batuan basal (b)

Batuan terobosan ini berbentuk memanjang yang mungkin merupakan sill, lurus, dan radier yang memusat di Gunung Api Bantoloe atau Gunung Api Sapaya. Pada umumnya membentuk morfologi bergelombang; dan berwarna hitam keabuan, menunjukkan struktur lubang (vesikuler) yang pada umumnya terkekarkan tidak beraturan yang diduga disebabkan oleh pembekuan dan diisi oleh larutan silika (Gambar 13). Adanya struktur lubang menunjukkan bahwa batuan ini merupakan aliran lava, sehingga basal ini diduga berhubungan dengan aktivitas gunung api, dan muncul melalui rekahan yang diakibatkan oleh pemunculan gunung api tersebut. Mineral penyusunnya terdiri atas piroksin sebagai fenokris
dengan massa dasar felspar. Menurut Indonesia Gulf Oil (1972) dan Obradovich (1974) dalam Sukamto dan Supriatna (1982), umur satuan ini adalah 7,5; 6,99 dan 7,36 juta tahun setara dengan Miosen Akhir. Satuan basal ini menerobos satuan konglomerat, dan diduga penerobosan ini berlangsung pada Miosen Akhir - Pliosen Akhir (Sukamto dan Supriatna, 1982), namun penulis berpendapat bahwa penerobosan ini mungkin berhubungan dengan aktivitas magma pada saat Gunung Api Bantoloe aktif atau magma sisa Gunung Api Sapaya sendirí.

- Satuan Diorit (d)

Satuan ini bentuk singkapannya memanjang dan membentuk kelurusan berarah timur timur laut barat barat daya, dan tersingkap di bagian utara daerah penelitian. Batuan terobosan ini berwarna keabuan, masit, bertekstur porfir dengan fenokris amfibol, dan biotit dengan massa dasar felspar. Hasil penarikhan KaliumVArgon menunjukkan umur 9,21 dan 7,74 juta tahun yang sebanding dengan Miosen Akhir (Obradivich, 1974 dalam Sukamto dan Supriatna, 1982). Batuan ini menerobos satuan breksi gunung api, satuan tuf, dan satuan konglomerat.

- Satuan breksi Gunung Api Bantoloe (Vbb)

Sebaran satuan ini berbentuk lingkaran, dan membentuk morfologi pegunungan dengan tutupan lahannya terdiri atas hutan, ladang dan sebagian pemukiman. Satuan ini terdiri atas breksi dengan sisipan lava. Breksi' (Gambar 14) bersifat masif, hubungan fragmen dan matriks sangat erat, komponen kasar meruncing - agak membulat, ukuran fragmen $10 \mathrm{~cm}-80 \mathrm{~cm}$. Fragmen terdiri atas andesit - basal, berwarna hitam keabuan; dan matriks tersusun oleh tuf berbutir kasar sampai lapill. Satuan ini menjemari dengan satuan lava Gunung Api Bantoloe, dan pada umumnya batas dengan satuan breksi gunung api merupakan topografi sangat curam dan berbentuk melingkar yang diduga sebagai bekas kawah. Satuan ini diduga merupakan fasies proximal Gunung Apl Bantoloe. Berdasarkan kesebandingannya dengan batuan Gunung Api Baturapu-Cindako (Sukamto dan Supriatna, 1982), gunung api ini diduga berumur Pliosen Akhit,

- Satuan lava Gunung Api Bantoloe (VIb)

Sebaran satuan ini melingkar, membentuk morfologi pegunungan, pola aliran menyebar. Batuan ini
berwarna hitam keabuan, masif, keras (Gambar 15), sebagian menunjukkan kekar meniang dan sebagian kekar melembar. Mineral penyusunnya piroksin dengan massa dasar felspar. Satuan lava ini tidak jauh sumbernya, diduga merupakan produk Gunung Api Bantoloe sebagai fasies pusat.

- Satuan Diorit Bantoloe (db)

Satuan ini tersingkap di puncak Gunung Api Bantoloe, yang diduga merupakan batuan intrusi dalam, dan sebagai fasies pusat. Batuan ini berwarna keabuan cerah, tekstur porfiritik, dan pada umumnya telah lapuk lanjut. Munculnya batuan ini dipermukaan mungkin disebabkan oleh proses pelapukan dan proses erosi yang sangat intensif.

- Satuan breksi Gunung Api Lampobatang (Vbl)

Sebaran satuan ini di daerah penelitian tidak luas yang tersingkap di tengah bagian timur. Pada umumnya telah lapuk lanjut, dan dengan batuan di sekitarnya dapat dibedakan berdasarkan penampakan morfologi dan soilnya yang berwama coklat kemerahan. Batuannya terdini atas breksi dengan fragmennya berukuran bongkah sampai kerakal. Berdasarkan atas morfologinya, satuan ini merupakan produk Gunung Api Lampobatang.

Endapan aluvium (Qa)
Endapan ini tersusun oleh kerakal, kerikil, pasir, lempung. dan-lumpur yang merupakan endapan sungai. Pengendapan ini sampai sekarang masih berlangsung.

Struktur geologi

Struktur geologi yang dapat diamati di daerah penelitian adalah sesar, gawir sesar, intrusi basal, dan intrusidionit.

Sesar yang berkembang adalah sesar berarah timur timur laut - barat barat daya, dan barat laut tenggara. Sesar-sesar ini dicerminkan oleh penampakan kelurusan lembah, dan terbentuk oleh aktivitas tektonik.
Gawir sesar terlihat melingkar yang dicirikan oleh lereng sangat terjal, bentuk sungai mengikuti bentuk gawir, dan membatasi satuan breksi gunung api dan batuan Gunung Api Bantoloe. Gawir ini diduga bekas kawah Gunung Api Sapaya. Diameter kawah ini lebih besar dari 2 km , sehingga disebut kaldera.

Geo-Sciences

Gambar 4. Peta geologi daerah Sapaja dan seitamya ditalsir pada oitra.

Gamber 5. Perampang geologi dar Gambar 4.

Geo-Sciences

Gambar 6. Singkapan satuan bahugamping berlapis of lokasi 4 ($119,5728 \mathrm{BT}, 5,4314 \mathrm{LS}$)

Gambar 7. Singkapan satuan breksi furuing api (Vbs) a potret di locasi2 (119,5228BT,5,451515)

Gantar 8. Sisipantufdalam satuan breisigunung api(Vbs) dilokas 5(119,5364BT,5,4335LS).

Gambar 2 Singkapan ssazan M(Vs) di lokasi 22 (119,6730 8T, 5.2821LS).

Gambar 10. Singkapan batupasir Alan dengan sispan konglomerat di dalam Satuan konglomerat (Sk), dilokasi 25 (119.6798 BT, 5,2736 LS).

Gambss 11. Singkapan satuan konglomerat (Sk) di iokasi (119,5015 BT,5,2828LS).

Gambar 12. Sisipan batipasir tufan dalam satuan konglomerat (Sk) Gilokani 18 (119,5442,8T, $5,3100 \mathrm{LS}$).

Gambar 13. Structur lubang dan keizer pada sataan basal (b) yang disi oloh. Isrutan slika dilokasi 14 (118,5319 BT, 5.3792LS)

Geo-Sciences

Gambar 14. Singkapan Satuan breksi gunung api Bantalioe (Vob) 6 lokasi3(199.5749ET.5.3922LS).

Intrusi basal membentuk belurusan, dan secara keseluruhan membentuk pola menyebar dari pusat Gunung Api Sapaya. Batuan ini diduga muncul ke permukaan melalui sesar normal atau rekahan yang dikontrol oleh munculnya Gunung Api Sapaya.
Intrusi diont yang merupakan batu beku dalam membentuk kelurusan berarah timur laut - barat daya. Batuan ini diduga muncur ke permukaan melalui zona sesar tektonik yang berarah timur lautbarat daya, dan telah mengalami erosi cukup intensit, sethingga muncul di permukaan.

IDENTIFIKASI GUNUNG API PURBA

- Gunung Api Sapaya

Bentang alam Gunung Api Sapaya memperlihathan reliet kasar (pegunungan - perbulitan) yang disusun oleh breksi aliran piroklastika (satuan breksi) dan tuf (satuan tuf). Bentang alam ini membentuk lengkungan berdiameter lebih besar dari 2 km yang diduga sebagai kaldera. Adanya kaldera ini menunjukkan gunung api ini pernah mengalami erupsi cukup dahsyat. Bentuk bentang alamnya sekarang ini tidak kerucut lagi diduga disebabkan oleh suatu letusan, dan kemudian diikuti oleh proses erosi cukup intensif. Namun kalau direkonstruksi berdasarkan kelerengannya dan kemiringan lapisan tuf, bentuk kerucut ini masih dapat dikenali (Gambar 5, penampang EF).

Batuan penyusunnya terdiri atas satuan breksi gunung api menempati fasies proksimal, dan satuan tuf menempati fasies medial yang kedua satuan bethubungan saling menjemari, sedangkan konglomerat yang menindih secara tidak selaras sebagai fasies distal. Fasies pusat diperkirakan dijumpai di đalam bentang alam melingkar yang ditutupi oleh batuan Gunung Api Bantoloe.

Gambar 15. Singkapan Satuan lyai Bantoloe (VB) di fokas 10 (119,6341 BY, 5.4162LS).

Kelurusan yang berpola manyebar terhadap Gunung Api Sapaya diduga merupakan sesar normal yang diakibatkan oleh munculnya gunung tersebut. Sesar normal tersebut bersifat tension dan membuka, sehingga bukaan ini merupakan jalur keluarnya basal.

Kedudukan perlapisan batuan (arah jurus dan kemiringan batuan) menunjukkan tidak teratur, tenutama di sekitar sesar tektonik dan batuan intrusi (basal dan diorit) karena kedudukannya sudah terubah oleh aktivitas kedua strultur.

Berhubung lokasi gurung api ini terietak dalam peta Lembar Sapaya, gunung api tersebut diusulkan sebagai Gunung Api Sapaya.

Gunung Api Bantoloe

Batuan Gunung Api Bantoloe terdiri atas satuan breksi Gunuing Api Bantoloe (fasies proksimal), satuan lava dan dionit Gunung Api Bantolce (fasies pusat). Morfologi sekarang tidak menunjukican bentuk kerucut, justru di bsgian tengah nisbi rendah. Penampakan ini disebabkan oleh proses erosi sangat intensif, yang ditunjukkan oleh pemunculan diorit yang sebenarnya merupakan batuan beku đalam, sebaliknya hasil rekonstruksi morfologi yang didasarkan oleh kemiringan lereng, menunjukkan morfologi bentuk kerucut. Berdasarkan rekonstrusi morfologi dan batuannya (Gambar 15, penampang AB) gunung api ini asalnya berbentuk kerucut. Pada Peta Geologi Lembar Ujungpandang, Beteng dan Sinjiai, satuan ini merupakan batuan Gunung Api Baturapu-Cindako, namun pada Peta Rupabumi skala 1 ; 50.000 , nama kedua gunung tidak ada. Oleh karena itu nama gunung api tersebut diambil dari nama gunung yang terletak di puncak, yaitu Gunung Bantoloe. Gunung Api Bantoloe dapat disebandingkan dengan Gunung Api BaturabeCindako, yang berumur Pliosen (Sukamto dan Supriatna, 1982).

DISKUSI

Simkin et al., (1981) dan Gill (1981) mengatakan bahwa gunung api Resen di daerah tumbukan pada umumnya berkomposisi andesit, mempunyai bentuk kerucut, tersusun oleh perlapisan batuan beku luar, aglomerat, breksi gunung api dan tuf, kadang-kadang diintrusi oleh batuan beku terobosan berbentuk retas, sill, cryptodome dan leher gunung api,
Menurut Simandjutak (1993) sejak zaman Kapur sampai Miosen Tengah, Mandala Geologi Sulawesi Barat merupakan busur gunung api dari sistem tunjaman ke arah barat, yaitu tunjaman tipe Cordileran (Kapur), dan tipe tunjaman Tethyan (Miosen Tengah); sedangkan Bergman drr. (1996) yang mendasarkan analisis geokimia batuan gunung api berumur Tersier di Lengan Sulawesi Selatan menunjukkan bahwa batuan gunung api tersebut merupakan hasil peleburan batuan yang berasal dari Benua Australia.
Gunung Api Sapaya berumur Miosen Tengah Pliosen (setara dengan Formasi Camba), saat itu merupakan fase tektonik Mio-Pliosen, yang ditandai oleh tumbukan benua mikro yang merupakan pecahan dari Benua Australia dengan benua Eurasia (Coffield drr. 1993), dan disebut sebagai sistem tunjaman Tethyan (Simanjutak, 1993). Maka pembentukan gunung api ini mungkin dikontrol oleh sistem tunjaman Tethyan.

Di sebelah utara bagian tengah terdapat morfologi perbukitan breksi dan tuf, dan dijumpal adanya lembah datar cukup luas yang sekarang merupakan genangan Dam Bili-bili. Sangat mungkin bentukan ini juga merupakan gunung api purba yang sudah sangat tererosi. Lembah datar mungkin sebagai kaldera, dan diduga lebih tua daripada Gunung Api Sapaya. Untuk itu perlu dilihat citra di sebelah utara lembar,

Setiap gunung api menghasilkan beberapa fasies gunung api yang terdiri atas batuan gunung api primer (fasies central, fasies proximal, dan fasies medial), dan batuan gunung api hasil rombakan (fasies distal), Batuan gunung api primer di daerah ini mungkin dapat disebandingkan dengan anggota batuan gunung api Formasi Camba, sedangkan batuan gunung api hasil rombakan disetarakan dengan batuan sedimen laut dan batuan gunung api klastika dari Formasi Camba (Sukamto dan Supriatna, 1982). Oleh karena itu Formasi Camba mungkin dapat dibagi menjadi banyak satuan
batuan.
Sebaran satuan konglomerat yang menempati fasies distal dari Gunung Api Sapaya berkembang di bagian barat - barat laut, dan batuan gunung api primernya di daerah tersebut seolah-olah terpotong. Satuan ini diduga hasil suatu longsor sektoral Gunung Api Sapaya di bagian barat.

Adanya aktivitas magmatisme biasanya berhubungan dengan keterdapatan mineral bijih. Urat kuarsa yang terdapat pada satuan basal, satuan diorit, satuan lava Gunung Api Bantoloe, dan mengisi struktur lubang pada satuan basal diduga merupakan hasil proses hidrotermal dari aktivitas magmatisme yang lebih muda. Urat ini diduga mengandung endapan bijih yang bersifat ekonomis. Untuk mengetahui jenis cebakan dan mineral bijihnya masih perlu penelitian tebih fanjut.

Perkembangan gunung api

Peta gunung api daerah penelitian dapat dilihat pada Gambar 16. Perkembangan gunung api di daerah penelitian diawali oleh pembentukan Gunung Api Sapaya yang berbentuk kerucut pada MiosenPliosen, Selanjutnya gunung api ini mengalami letusan cukup dahsyat, sehingga membentuk kawah besar (kaldera). Pada Pliosen, di dalam kaldera Gunurig Api Sapaya tumbuh Gunung Api Bantoloe yang berbentuk kerucut. Proses pelapukan dan erosi sangat intensif, sehingga membentuk penampakan sekarang ini (Gambar 17).

KESIMPULAN

Integrasi citra landsat dan citra IFSAR dapat digunakan untuk mengidentifikasi gunung api purba berdasarkan morfologi, batuan penyusun dan struktur geologi gunung api.

Gunung Api Sapaya diduga awalnya berbentuk kerucut, kemudian mengalami letusannya cukup besar yang mengakibatkan terbentuknya kaldera, dan erosi sangat intensif. Batuannya tersusun oleh satuan breksi gunung api (fasies proksimal), satuan tuf (fasies medial), dan satuan konglomerat (fasies distal) yang berumur Miosen Tengah - Pliosen setara dengan Formasi Camba,
Gunung Api Bantoloe yang terletak dalam Kaldera Sapaya awalnya juga mempunyai bentuk kerucut, dan telah mengalami erosi sangat intensif, sehingga membentuk morfologi seperti sekarang ini.

Geo-Sciences

C: Perbentarain Gunang ape Bertuice do doban kaidena Girung apu Sapaya

E. Imtam eawhot Gonvery upitionja

Gambar 17. Sketsa perkenbangan gunung api Sspaya dan Bantoloe.

ACUAN

Bergman, S.C., Coffield, D.Q., Talbot, J.P, dan Garrard, R.A, 1996. Tertiary Tectonic and magmatic evolution of western Sulawesi and the Makassar Strait, Indonesia; evidence for Miocene continent-continent collision in Tectonic Evolution of Southeast Asia, Geological Society Special Publication, No. 106; 391-429.

Coffield, D.Q. , Bergman S.C., Guritno N., Robinson N,M., dan Talbat, J. P. , 1993. Tectonic and Stratigraphy Evolution of Kalosi PSC and Associated Development of a tertiary Petroleum System, South Sulawesi, Indonesia. Proc. the 22"I, P.A Annual Convention, v, I: 679.706.
Gill, J. B., 1981. Orogenic Andesites and Plate Tectonics, Springer - Verlag, 390 pp.
Hartono, G. dan Safri, L,, 2007. Peranan Merapi untuk mengidentifikasi fosil gunung api pada Formasi Andesit Tua, studi kasus di Daerah Wonogiri, dalam Geologi Indonesia: Dinamika dan Produknya, Publikasi Khusus Pusat Survei Geofogi, Badan Geologi. 63-80.
Macdonald, A.G., 1972. Volcanoes, Prentice-Hall, Inc. Englewood Clifts, New Jersey, 510 pp.
Simandjuntak, T.O., 1993. Neogen Plate Convergence in Eastern Indonesia. Jurnal Geologi dan Surmberdaya Mineral, no.21:2-10.
Simkin, T., Siebert, L., McCletland, L., Bridge, D., Newhall, C., Latter, J.H., 1981. Volcanoes of the World: A Regional Directory, Gazetteer, and Chronology of Volcanism During the Last 10,000 Years. Stroudsburg, Penn: Hutchinson Ross. 240 p.
Sukamto, R., 1975. The Structure of Sulawes in light of plate tectonics. Proc.Reg. Cont.Geol, Min. Res. S.E. Asia, Jakarta, 121-141.
Sukamto, R, 1982. Geologi Lembar Pangkajene dan bagian barat Watamtope, Sulawesi Selatan. Pusat Penelitian dan Pengembangan Geologi, Bandung.
Sukamto, R. dan Supriatna, 1982. Geologi Lembar Ujungpandang, Benteng dan Sinjai, Sulawesi Selatan. Pusat Penelitian dan Pengembangan Geologi, Bandung.
Surono, 1998. Geology and Origin of the Southeast Sulawesi Continental Terrane, Indonesia. Media Teknik, no.3: 33-42.
Vessel, R. K. and Davies, D. K., 1981. Non Marine Sedimantation in An Active Fire Arc Basin, in Etridge, F. G., and Flores, R.M. Editors, Recent and Ancient Non Marine Depositional Environments: Models for Exploration, Soc. of Ecnom. Paleont. and Min., Special Publication 31.
Williams and Birney, M., 1979. Volcanology, Freeman, Cooper \& Co., San Francisco, 397 pp.
Withjack, M.O. and Sceiner, C., 1984. Fault Pattern Associated with Domes- An Experianmental and Analytical Study, Am, Ass. Petr. Geol. Bull., v.66 (3): 302-316.

[^0]: Naskah grarime: 23 Maret 2009
 Revisilseraktir : 25 Nopember 2000

