KARAKTERISTIK BENTANG ALAM DAERAH PAYAKUMBUH, SUMATERA BARAT

U.M. Lumbanbatu
Pusat Survei Geologi
J. Diponegoro No. 57, Bandung

Abstract

SARI Karakteristrik bentang alam daerah Payakumbuh dan sekitarnya dicirikan oleh pengaruh aktivitas gunung api dan tektonik serta oleh pengaruh proses geologi lainnya, seperti proses pelapukan, pengikisan, pengendapan dan pelarutan. Bentang alam yang dibangun oleh produk Gunung Api Marapi dan Gunung Api Malintang tersebar di bagian tengah daerah penelitian. Bentang alam bentukan asal vulkanik itu kemudian terkena pengaruh aktivitas tektonik yang menghadirkan lineasi-lineasi yang diduga sebagai sesar aktif. Secara umum, pola sesar ini searah dengan pola zona sesar Sungai Takung. Lebih lanjut berdasarkan karakteristik dan proses geomorfologi, bentuk lahan daerah ini dapat dipisahkan menjadi bentukan asal vulkanik, bentukan asal fluviatil, bentukan asal fluvio-vulkanik, bentukan asal denudasi, bentukan asal struktur, dan bentukan asal kars. Berdasarkan fakta tersebut dapat dikatakan bahwa proses pembentuk morfogenetik di daerah penelitian direpresentasikan baik oleh proses endogen maupun proses eksogen. Bentukan asal yang merepresentasikan proses eksogen antara lain bentukan asal denudasi, bentukan asal fluviatil, bentukan asal fluviovulkanik, dan bentukan asal kars, sedangkan yang merefleksikan proses endogen dimanifestasikan sebagai bentukan asal struktur dan bentukan asal vulkanik.

Kala kunci : bentang alam, bentuk lahan, bentukan asal vulkanotektonik, bentukan asal struktur

Abstract

The landscape of Payakumbuh and the surrounding area is characterized by the influences of volcanic and tectonic origins as well as by geological processes like weathering, erosion, sedimentation and solution. The landscape which is built up by the product of Marapi and Malintang Volcanoes, occupies the central part of the investigated area. The landscape of volcanic origin was then affected by tectonic activities producing lineaments that are assumed as active faults. These faults which are in NW-SE direction, seem to have the same direction as the Takung River Fault Zone. Based on its geomorphological characteristics and processes, the landform of the investigated area can be distinguished into volcanic, fluvial, fluvio-volcanic, denudational, structural and karst origin. It can be concluded that morfogeneticly the investigated area has been formed by endogen and exogen prosesses. Exogen prossesses produced the denudational, fluvial, and kars origin, while endogen process produced the structural and volcanic origins.

Keywords: landscape, landform, volcano-tectonic origin, structural origin a

PENDAHULUAN

Bentang alam (landscape) merupakan produk proses geo-dinamika yang berlangsung sejak bumi terbentuk. Bentang alam itu sendiri disusun oleh bentuk lahan (landform) maupun bentuk medan (terrain). Pembentukan dan perubahan bentang alam sangat dipengaruhi oleh berbagai proses geologi, seperti gaya eksogen maupun endogen. Kedua proses geologi tersebut dapat menghasilkan bentang alam yang kompleks.
Verstappen (1973) menyatakan bahwa daerah Payakumbuh secara geomorfologis termasuk ke dalam zona Sumatera Tengah (Gambar 1). Santoso dkk. (1993) melakukan pemetaan geomorfologi
mencakup DAS Sinabar dan memisahkan bentuk lahan di wilayah tersebut menjadi Bentukan Asal Gunung Api (V), Bentukan Asal Struktur (S), Bentukan Asal Kars (K), Bentukan Asal Denudasi (D), dan Bentukan Asal Fluviatil (F). Poedjoprajitno dan Yusuf (1993) memisahkan geomorfologi daerah Payakumbuh menjadi Bentukan Asal Vulkanik, Struktur, Denudasi, Kars, dan Fluviatil. Pengelompokan geomorfologi tersebut dilakukan berdasarkan bentukan asal (form of origin). Pengelompokan morfologi terperinci ini perlu dilakukan dalam kerangka pengembangan wilayah. Penelitian ini ditujukan untuk menyajikan karakteristik bentang alam daerah Payakumbuh berdasarkan satuan geomorfologi terperinci, yaitu satuan bentuk lahan.

Gambar 1. Peta sketsa morfostruktur regional daerah Padangpanjang dan sekitarnya (Verstappen, 1973).

METODOLOGI

Pembuatan peta geomorfologi dilakukan berdasarkan penafsiran citra satelit dan foto udara. Untuk memperoleh citra satelit yang sesuai untuk analisis geomorfologi, data citra satelit ETM + 7 ditampilkan dengan kombinasi RGB 457. Citra ini kemudian diimpitkan dengan data DEM SRTM model Shaded Relief. Penafsiran dilakukan berdasarkan sistem ITC (International Institute for Aerospace Survey and Earth Sciences) yang terdiri atas sistem utama survei analitik, sintetik, dan pragmatik (Verstappen, 1985). Pengecekan lapangan dilakukan untuk memverifikasi hasil penafsiran citra. Pengelompokan bentang alam dilakukan berdasarkan genesis dan parameter lain proses-proses geomorfologi,
degradasi (tipe erosi, pelarutan kars), dan agradasi banjir.
Satuan bentang alam (landscape) selanjutnya dikelompokkan menjadi satuan bentuk lahan (landform) berdasarkan berbagai unsur morfologi, yaitu kondisi topografi, kecuraman lereng, bentuk lereng, dan bentuk lembah (Zuidam, 1985). Selain unsur-unsur tersebut, kondisi geologi dan struktur juga merupakan hal yang memengaruhi pengelompokan bentang alam tersebut. Kondisi geologi adalah jenis batuan, sedangkan unsur-unsur struktur mencakup gawir sesar (fault scarp), gawir (escarpment), arah gerak sesar, kelurusan lembah, kelurusan perbukitan, kelurusan sungai, telaga sesar (sagpond), penurunan (depresi) pembumbungan, pergeseran igir bukit, pergeseran sungai, dan deviasi
arah aliran sungai. Selain yang disebut di atas, unsurunsur lain yang diperhatikan adalah pergerakan tanah (mass movement), longsoran (landslide), jatuhan batu (rock falls), dan rayapan tanah (soil creep).

TATAAN GEOGRAFI DAN GEOLOGI

Daerah penelitian terletak pada koordinat $100^{\circ} 30^{\prime}$ $101^{\circ} 00^{\prime}$ BT dan $00^{\circ} 00^{\prime}-00^{\circ} 30^{\prime}$ LS (Gambar 2). Secara administratif, daerah ini termasuk ke dalam Kabupaten Agam, Kabupaten Tanah Datar, Kabupaten Limapuluh Kota, dan Kota Payakumbuh, Provinsi Sumatera Barat.
Litologi daerah penelitian disusun oleh kelompok batuan malihan, kelompok batuan sedimen Tersier, dan kelompok batuan gunung api dan intrusi (Silitonga dan Kastowo, 1995). Batuan tersebut mempunyai kisaran umur dari Kuarter sampai Permo-Karbon. Jenis dan sebaran batuan dapat dilihat dalam Gambar 3.

Kelompok batuan malihan yang berumur PermoKarbon terdiri atas kuarsit dan batupasir kuarsa dengan sisipan filit, serpih terkersikkan, batugamping pejal berongga, batusabak, batuan gunung api, tuf klorit, konglomerat, dan rijang. Kelompok batuan ini sudah mengalami perlipatan, pensesaran, dan denudasi.

Kelompok batuan sedimen Tersier terdiri atas konglomerat kasar beraneka ragam dengan sisipan batupasir kuarsa mengandung mika sisipan arkose, serpih lempungan, konglomerat kuarsa, dan batubara. Kelompok batuan ini menempati bagian timur laut daerah penelitian dan memperlihatkan struktur monoklin.

Batuan gunung api dan intrusi terdiri atas andesit sampai basal, granodiorit dan granit. Batuan intrusi granit tersebar di selatan daerah penelitian yaitu di sekitar Gunung Abu dan Gunung Padang Awas yang pola penyebarannya searah dengan arah sumbu panjang Pulau Sumatera, yaitu barat laut - tenggara.

Gambar 2. Peta Iokasi daerah penelitian.

Geo-dynamics

Gambar 3. Peta geologi daerah Payakumbuh dan Batusangkar (Silitonga dan Kastowo dkk. 1995).

HASIL PENELITIAN

Bentang alam (landscape) daerah' penelitian dapat dibedakan menjadi Bentang Alam Vulkano-tektonik dan Struktur. Bentang Alam Vulkano-Tektonik menempati bagian barat daerah penelitian, sedangkan Bentang Alam Struktur tersebar di daerah timur penelitian (Gambar 4). Berikut ini uraian kedua jenis bentang alam tersebut.

Bentang Alam Vulkano-tektonik

Bentang Alam Vulkano-Tektonik terutama terbentuk oleh hasil kegiatan Gunung Malintang dan hasil Gunung Marapi. Indikasi pengaruh tektonik
ditunjukkan oleh kehadiran sesar aktif berupa lineasi yang memotong material gunung api serta gawirgawir sesar. Pengaruh aktivitas gunung api Marapi dan Gunung Malintang menghasilkan bentuk lahan berupa kerucut gunung api, lereng gunung api, kaki gunung api, kerucut parasiter, dataran lahar, dan lava. Kehadiran bentuk lahan tersebut merupakan penciri utama yang dipakai untuk mengelompokkan daerah ini menjadi bentukan asal gunung api. Selain produk aktivitas gunung api tersebut di atas, terlihat pula indikasi lain, yaitu adanya struktur (zona hancuran) yang berbentuk setengah lingkaran yang diperkirakan sebagai akibat aktivitas Gunung Malintang dan Marapi (Gambar 5).

Gambar 4. Pembagian bentang alam (landscape) daerah penelitian.

Bentang Alam Perbukitan struktur

Bentang Alam Perbukitan struktur berkembang di daerah timur, utara, dan timur laut daerah penelitian. Bentang alam ini terutama ditempati oleh kelompok batuan malihan, kelompok batuan sedimen Tersier, batuan intrusi granit, dan granodiorit. Bentang alam ini didominasi oleh perbukitan yang sudah mengalami denudasi secara sedang - kuat, sehingga menghasilkan perbukitan memanjang, perbukitan sisa, serta perbukitan dan pegunungan monoklin dan bentuk lainnya berupa kars. Gejala nendatan terlihat
di sebelah utara daerah penelitian, dan proses penorehan yang kuat terdapat di bagian barat daerah penelitian. Selain itu, bentang alam ini dicirikan oleh kehadiran gawir erosi dan gawir sesar yang berpola barat laut - tenggara. Daerah sebelah timur laut daerah penelitian membentuk lahan pegunungan dan perbukitan monoklin yang batuan penyusunnya terdiri atas napal lempungan, batupasir lignit, tuf breksi andesit, batu pasir glaukonitan serpih, dan batugamping napalan dengan sisipan tuf andesitis.

KLASIFIKASI BENTUK LAHAN (LANDFORM)

Bentang alam daerah penelitian inidapat dipisahkan menjadi enam kelompok bentukan asal (form of origin) seperti terlihat dalam Gambar 6. Keenam kelompok bentukan asal yang dimaksud adalah Bentukan Asal Gunung Api (V), Bentukan Asal Fluviatil (F), Bentukan Asal Fluvio-vulkanik (FV), Bentukan Asal Denudasi (D), Bentukan Asal Struktur (S), dan Bentukan Asal Kars (K). Berikut ini uraian masing masing bentuk lahan tersebut.

Bentukan Asal Gunung Api (Volcanic Origin) (V)

- Bentuk Lahan Kerucut Gunung Api (V1)

Bentuk lahan Kerucut Gunung Api dibentuk oleh dua gunung api, yaitu Gunung Api Marapi (2.891 m) dan Gunung Api Malintang (2.262 m). Pada Gunung Malintang terdapat kawah yang terbuka ke arah tenggara, sehingga material yang keluar dari gunung api tersebut mengalir ke arah tenggara. Namun waktu dan tipe letusan gunung api ìni tidak pernah diketahui (Verstapen, 1973). Sebaliknya Gunung Api Marapi hingga sekarang masih aktif dan sejumlah letusan tipe eksplosif telah terjadi.
Batuan penyusun bentuk kerucut gunuing api ini terdiri atas breksi andesit - basal, aglomerat, pecahan lava berongga, lahar, dan lava (Qamg) (Silitonga dan Kastowo, 1995). Pola aliran sungai memperlihatkan pola memencar (radier), dengan kemiringan lereng yang cukup curam ($>40 \%$).

Proses erosi tegak pada bentuk lahan lebih dominan dibandingkan dengan proses erosi mendatar. Hal ini karena sudut lereng yang curam sehingga bentuk lembah yang berkembang di bentuk lahan ini adalah bentuk V kasar.

- Bentuk Lahan Lereng Gunung Api (V2)

Lereng Gunung Api merupakan bagian dari tubuh gunung api dengan kemiringan lereng berkisar antara $15^{\circ}-25^{\circ}$, dengan bentuk lereng lurus hingga agak cekung. Bentuk lereng gunung api memiliki bentuk lembah sungai berbentuk V , karena erosi tegak masih lebih kuat dibandingkan dengan erosi mendatar (horizontal) atau menyamping. Longsoran di sepanjang lembah sungai dapat terjadi akibat erosi tegak. Sementara aliran sungai membentuk pola memencar (radier). Batuan yang menyusun terdiri atas piroklastika berukuran bongkah, bom, lapili, pasir, dan abu gunung api yang berselingan satu sama lainnya.

- Bentuk Lahan Dataran Antargunung Api (V3)

Bentuk lahan ini menempati bagian timur daerah penelitian, yaitu terletak di antara lereng utara Gunung Malintang dan Gunung Marapi, membentuk morfologi bergelombang lemah dengan puncak terendah 556 m dan tertinggi 736 m . Aliran sungai yang berkembang pada bentuk lahan ini berpola agak memencar (subradier) dengan bentuk lembah berbentuk U tajam. Bentuk lahan asal dataran antargunung api disusun oleh tuf batu apung (Qpt), dan pada beberapa tempat terlihat endapan lahar yang umumnya terdiri atas pasir kasar mengandung fragmen - fragmen batuan andesitik.

- Bentuk Lahan Kerucut Parasiter (V4)

Bentuk lahan asal kerucut parasiter ini terdapat di Gunung Bongsu (1125 m) yang terletak di barat laut Gunung Malintang (Gambar 7). Lembah berbentuk huruf V , dengan kemiringan lereng berkisar antara $25^{\circ}-30^{\circ}$, berbentuk lurus hingga agak cembung. Batuan penyusun terdiri atas lava andesiti-basaltis berstruktur meniang, sehingga pada lereng lereng yang terjal atau curam terdapat batu jatuhan dan longsoran.

- Bentuk Lahan Aliran Lava (V5)

Bentuk Lahan Aliran Lava tersebar secara terbatas di daerah bukaan yang terdapat di bagian selatan barat daya Gunung Malintang. Bentuk topografinya kasar dengan pôla aliran sungai agak memencar. Kemiringan lereng berkisar antara $20^{\circ}-30^{\circ}$, dengan lembah berbentuk huruf V. Bentuk lahan ini ditutupi oleh hutan sernak belukar.

*
 - Bentuk Lahan Aliran Lahar (V6)

Bentuk lahan ini terdapat di lereng selatan Gunung Malintang dengan bentuk topografi bergelombang lemah, halus, dan lurus. Di daerah penelitian, bentuk lahan ini dihasilkan oleh produk dari Guniung Malintang yang bersumber dari bukaan yang berbentuk tapal kuda yang terdapat di puncak bagian selatan gunung yang terutamia disusun oleh endapan lahar dan debu gunung api. Tutupan lahan didominasi oleh persawahan terrasering, perladangan, dan pemukiman. Proses erosi menunjukkan adanya erosi ke samping dan tegak, namun masih didominasi oleh erosi tegak. Longsoran dapat terjadi di sepanjang lembah sungai yang berbentuk huruf V. Satuan bentuk lahan ini merupakan lahan yang cukup subur.

Gambar 6. Peta geomorfologi daerah Payakumbuh dan seklarnya.

Gambar 7. Bentuk lahan kerucut parasiter Gunung Bongsu yang dikelilingi oleh dataran antargunung api.

- Bentuk Lahan Perbukitan Vulkanik Tertoreh (V7)

Bentuk lahan ini menempati lereng Gunung Bongsu. Daerah ini disusun oleh material gunung api berupa tuf, pasir, dan lempung, serta disisipi oleh lapisan tipis konglomerat. Lereng agak melandai dengan sudut berkisar dari $13^{\circ}-20^{\circ}$. Pola aliran sungai agak memencar dengan lembah sungai berbentuk huruf U. Proses geologi berupa erosi ke samping terlihat, sehingga terjadi bentuk lembah sungai U.

- Bentuk Lahan Dataran Antargunung Apí (V8)

Kondisi topografi bentuk lahan ini agak cekung, lurus, dan halus, dengan kemiringan lereng landai ($6^{\circ}-13^{\circ}$) (Gambar 8). Pola aliran sungai yang terdapat diwakili oleh pola yang agak meranting dengan lembah berbentuk huruf U , halus. Bentuk lahan ini disusun oleh batuan lahar, tuf, tuf batuapung, dan arang (Qpt). Tanah penutup berwarna coklat kehitaman dengan tebal berkisar dari $0,5 \mathrm{~m}-1,5 \mathrm{~m}$. Satuan ini ditutupi oleh alangalang, sawah, ladang kebun, dan pemukiman. Payakumbuh terletak di atas bentuk lahan asal Dataran Gunung Api ini.

Bentukan Asal Fluviatil (Fluvial Origin) (F)

- Bentuk Lahan Dataran Aluvium (F1)

Bentuk lahan ini diperuntukkan sebagai persawahan, perladangan, dan pemukiman. Hal ini dimungkinkan karena kondisi topografinya yang hampir datar $\left(0^{\circ}-2^{\circ}\right)$, dan tersusun oleh granul, pasir, lanau, dan lempung yang bersifat urai. Pola aliran sungai berkelok-kelok (meandering) dengan lembah sungai berbentuk huruf U, halus. Proses erosi terutama terjadi secara mendatar. Walaupun topografinya hampir datar, namun tingkat ancaman banjir di wilayah ini rendah.

- Bentuk Lahan Kipas Aluvium (F2)

Satuan bentuk lahan ini mempunyai topografi berombak dengan lereng landai hingga miring ($6^{\circ}-13^{\circ}$). Bentuk topografinya cembung tidak beraturan, dengan pola aliran sungai semimemencar dan lembah sungai berbentuk huruf U, halus. Material yang menyusun satuan ini beragam, mulai dari gravel, pasir kasar, pasir halus, lanau, dan lempung. Bentuk lahan ini ditutupi oleh ilalang, persawahan, tegalan, dan pemukiman.

- Bentuk Lahan Lembah Timbusan (F3)

Bentuk Asal lahan ini merupakan hasil proses denudasi yang membentuk lembah yang kemudian diisi oleh endapan fluviatil. Topografinya datar dengan kemiringan landai hingga sedang, berbentuk memanjang mengikuti alur lembah sungai. Material penyusunnya terutama terdiri atas lanau sampai pasiran. Lahan ini oleh penduduk dipakai untuk pertanian karena subur. Sementara pada lahan yang mempunyai kemiringan, penduduk mengolahnya dengan membuat terrasering.

Bentukan Asal Fluvio-vulkanik (Fluvio-volcanic Origin) (FV)

Bentukan asal fluvio-vulkanik hanya terdiri atas satu satuan bentuk lahan, yaitu satuan, Bentuk Lahan Fluvio-vulkanik (FV1). Bentuk lahan ini mempunyai kemiringan lereng landai 6-16\% dengan bentuk cembung dan lurus. Sementara aliran sungai yang berkembang bérpola agak meranting dengan lembah berbentuk U, halus. Bentuk lahan ini disusun oleh , batuan piroklastika berupa lapili, pasir, dan abu gunung api. Selain itu, di beberapa tempat diendapkan juga pasir tufan, lanau tufan, lempung,

Gambar 8. Bentuk lahan antargunung api yang disusun oleh tut batuapung mengandung arang.
dan tuf. Menurut Silitonga dan Kastowo (1995) satuan ini tersusun oleh tuf batuapung. Bentuk lahan ini dikelola penduduk menjadi sentra pertanian karena tanahnya cukup subur. Selain itu, lahan digunakan sebagi perladangan, perkebunan, dan pemukiman.

Bentukan Asal Denudasi (Denudational Origin) (D)

- Bentuk Lahan Perbukitan Berpuncak Tak Teratur Tertoreh Kuat (D1)
Bentuk lahan ini tersebar di bagian timur daerah penelitian yang memperlihatkan kondisi topografi yang kasar dan berbukit-bukit dengan kemiringan lereng yang curam, berkisar antara ($25-55 \%$). Aliran sungai yang berkembang memperlihatkan pola yang agak meranting/mendaun dengan lembah sungai berbentuk huruf V , kasar. Bentuk lahan ini tersusun oleh batuan kuarsit, pasir kuarsa, batusabak, serpih, batuan gunung api, dan konglomerat. Tutupan lahan terutama terdíri atas hutan, alang alang, kebun, ladang, dan pemukiman.
- Bentuk Lahan Pegunungan Memanjang Tertoreh Sedang (D2)
Kondisi topografinya sedikit lebih halus dibandingkan dengan D1 dengan lereng yang sangat curam ($>55 \%$) dan lembah berbentuk huruf V, kasar berkembang dengan baik, sedangkan aliran sungai membentuk pola agak sejajar (subparallel). Bentuk lahan ini berkembang dengan pola berarah tenggarabarat laut, tersusun oleh batuan kuarsit, pasir kuarsa, batusabak, serpih, batuan gunung api, dan konglomerat. Tutupan lahan berupa hutan, semak belukar, ladang dan kebun, serta pemukiman di lereng pegunungan.

- Bentuk Lahan Perbukitan Tertoreh (D3)

Bentuk Lahan Perbukitan Tertoreh tersebar di bagian timur laut daerah penelitian yang disusun oleh batupasir kuarsa, serpih lempungan, dan konglomerat kuarsa. Bentuk lahan ini memperlihatkan kondisi topografi yang cembung lurus dengan kemiringan lereng antara 13-25 \% (agak landai), dengan pola aliran sungai agak meranting/mendaun dan lembah sungai berbentuk huruf U , halus. Satuan ini tertutupi oleh sawah, kebun, dan ladang.

- Bentuk Lahan Perbukitan Sisa (D4)

Bentuk Lahan Perbukitan Sisa tersebar di sekitar Desa Taram, Balaibalai, dan di sebelah selatan Padang Lawas, serta di lereng utara Gunung Malintang, yaitu Gunung Kaci (318 m) (Gambar 9). Bentuk Lahan Perbukitan Sisa ini disusun oleh batupasir, konglomerat, breksi vulkanik, dengan bentuk topografi cembung, lurus, dengan kecuraman lereng $>55 \%$ (sangat curam). Bentuk lahan ini ditutupi oleh hutan, semak belukar, dan ilalang.

Gambar 9. Bentuk lahan perbukitan sisa dengan lalar depan dataran antargunung api.

- BentukLahan Perbukitan Terisolir (D5)

Bentuk Lahan Perbukitan Terisolir terdapat di Bukit Alanglaut sebelah timur lereng Gunung Malintang (Gambar 10). Batuannya terdiri atas serpih, filit, batupasir, dan batugamping. Kemiringan lerengnya sangat curam ($>55 \%$). dengan kondisi topografi cembung dan lurus. Kawasan ini ditutupi oleh hutan, semak belukar, dan ilalang.

Gambar 10. Bentuk lahan perbukitan terisolasi.

- Bentuk Lahan Perbukitan Terdenudasi (D6)

Bentuk lahan ini tersusun oleh batugamping, batusabak, filit, serpih, dan kuarsit. Bentuk Lahan Asal Perbukitan Terdenudasi mempunyai kondisi topografi yang cembung, lurus, kadang-kadang sangat kompleks dengan tingkat kecuraman lereng 25 - 55%. Aliran sungai yang berkembang menunjukkan pola agak meranting/mendaun, dengan lembah sungai berbentuk huruf U halus. Bentuk lahan ini ditutupi oleh hutan, kebun, ladang, dan pemukiman.

Bentukan Asal Struktur (Structural Origin) (S)

- Bentuk Lahan Struktur Ternendatkan (S1)

Bentuk Lahan Struktur Ternendatkan menempati bagian barat laut daerah pemetaan. Pada bentuk lahan ini terdapat beberapa gejala longsoran/ nendatan yang jelas, sehingga memberikan penampakan bentuk lahan yang berbeda dengan sekelilingnya. Bentukan lahan ini disusun oleh batupasir kuarsa, lanau tufan, lempung, dan tuf. Di beberapa tempat menunjukkan kondisi topografi cembung, lurus landai dengan kemiringan lereng 6 13%. Sementara pola aliran sungainya agak meranting dengan lembah sungai berbentuk huruf V , kasar. Lahan ini diperuntukkan sebagian sebagai pemukiman dan sebagian lagi menjadi sawah serta ladang. Tutupan lahan terdiri atas hutan, semak belukar, ilalang, dan kebun.

- Bentuk Lahan Struktur Tertoreh Kuat (S2)

Bentuk Lahan Struktur Tertoreh Kuat disusun oleh kuarsit, kuarsa, batusabak, serpih, batuan gunung api, dan konglomerat. Satuan ini menyebar dengan pola tenggara - barat laut, seirama dengan struktur melingkar sebagai pengaruh aktivitas Gunung Api Malintang. Kondisi topografinya sangat kompleks diwarnai oleh kehadiran gawir-gawir sesar dan sejumlah longsoran. Longsoran tersebut dapat terjadi oleh adanya torehan sungai secara vertikal. Sebagian gawir tersebut ada kaitannya dengan struktur sesar namun sebagian lainnya hanyalah sebagai ekspresi topografi saja. Kondisi topografi secara umum sangat kompleks dengan kemiringan lereng antara 25 55%, yaitu sangat curam dengan aliran sungai yang berkembang di suatu tempat berupa pola trellis, namun di tempat lain ada juga agak meranting. Tutupan lahan dapat berupa hutan, kebun, ladang, dan pemukiman.

- Bentuk Lahan Pegunungan Monoklin (S3)

Bentuk Lahan Pegunungan Monoklin ini tersebar di bagian timur laut daerah penelitian. Satuan ini disusun oleh batuan serpih dan filit, kuarsit, dan batulanau. Pada satuan ini terdapat pola aliran trellis. Kondisi tografinya miring ke arah timur laut lurus, dengan kemiringan lereng 6-13 \%, landai. Tutupan lahan berupa hutan, semak belukar, dan ilalang.

- Bentuk lahan Perbukitan Monoklin (S4)

Perbukitan monoklin ini tersebar di sebelah timur laut daerah penelitian (Gambar 11). Satuan ini disusun oleh napal lempungan, batupasir lignit, tuf, dan breksi andesit. Kondisi topografinya bergelombang lurus miring ke arah timur laut dengan besar sudut kemiringan lereng 13-25\%, agak landai. Pola aliran yang menempati lahan ini adalah trellis, dengan lembah sungai berbentuk huruf V kasar. Tutupan lahan berupa hutan, ilalang, dan semak belukar.

Gambar 11. Bentuk lahan perbukitan Monoklin yang terdiri atas perselang-selingan perlapisan napal lempungan, batupasir lignit, tuf, dan breksi andesit.

- Bentuk Lahan Pegunungan Tertoreh Kuat (S5)

Bentuk Lahan Pegunungan Tertoreh Kuat ditemukan di daerah yang tidak begitu luas, yaitu di sekitar Padang-langga, Tanjung Langsat, dan Sungai Tuak. Kondisi topografinya cekung dan bergelombang dengan ketinggian lebih kurang 500 m di atas permukaan laut. Kemiringan lereng sekitar 6-13\%, yaitu landai dengan pola aliran sungai agak meranting.

Bentukan Asal Kars (Karst Origin) (K)

- Bentuk Lahan Perbukitan Kerucut Kars (K1)

Bentuk Lahan Perbukitan Kerucut Kars oleh Verstappen (1973) dinamai conical karst hills. Batuan penyusunnya adalah batugamping pejal berongga (Gambar 12). Satuan bentuk lahan ini terdapat di bagian tenggara daerah penelitian yang terbentang dari Balai Tangah hingga batas daerah tangkapan DAS Sinamar. Sebaran bentuk lahan merupakan perbukitan memanjang searah sumbu Pulau Sumatera. Kerucut kars mempunyai ketinggian yang beragam, seperti puncak gunung Padang Lawas (940 m) yang merupakan kerucut yang tertinggi di wilayah ini. Kondisi topografinya berbentuk cekung lurus, dengan kemiringan lereng berkisar dari 25 55%, yaitu curam hingga sangat curam. Pola aliran sungai berkembang agak meranting dengan lembah , sungai berbentuk huruf U, halus. Tutupan lahan dapat berupa hutan, ladang, kebun, dan pemukiman.

- Bentuk Lahan Kerucut Kars (K2)

Bentuk Lahan Kerucut Kars (Gambar 13) terpisah satu sama lainnya. Paling sedikit ada tiga Iokasi bentuk lahan ini yang ditemui di sekitar lereng Gunung Malintang bagian barat yang masing masing dipisahkan oleh material Gunung Api Malintang. Secara samar-samar pola sebarannya hampir sama dengan pola sebaran K1, yaitu searah dengan pola sumbu Pulau Sumatera. Berdasarkan data ini kemungkinan bawah material vulkanik tersebut masih merupakan kesinambungan dari bentuk lahan asal yang sama. Jadi terpisahnya Bentuk Lahan Asal Kerucut Kars ini bukan karena proses erosi/denudasi, tetapi karena ditutupi oleh material vulkanik dari Gunung Malintang. Topografi satuan ini berbentuk cekung, lurus, dengan kemiringan lereng berkisar antara $25-55 \%$, yaitu curam hingga sangat curam dengan pola aliran sungai agak meranting, dengan lembah sungai berbentuk huruf U , halus.

- Bentuk Lahan Perbukitan Kars (K3)

Bentukan Lahan Perbukitan Kars menempati bagian barat daya daerah penelitian. Satuan ini merupakan perbukitan yang pola sebarannya tidak beraturan. Bentuk lahan ini disusun oleh batugamping pejal berongga. Kemiringan lerengnya berkisar dari 6 13% landai dengan bentuk topografi cekung lurus, sedangkan pola aliran sungai yang berkembang adalah tipe agak meranting. Dalam bentuk lahan ini kerucut kars belum berkembang dengan baik. Lahan ini ditutupi oleh hutan dan alang-alang serta ladang ataupun perkebunan karet dan pemukiman.

Gambar 12. Penampakan bentuk lahan perbukitan kerucut kars.

Bentuk lahan di bagian barat dan barat daya daerah penelitian merupakan bagian dari Pegunungan Bukit Barisan yang terdiri atas sederetan pegunungan bongkah (block mountains), Lajur Pegunungan Bukit Barisan merupakan pemisah antara perbukitan rendah dan dataran aluvium timur dengan perbukitan rendah dan dataran aluvium barat. Bentuk lahan lajur ini sangat dipengaruhi oleh aktivitas gunung api aktif dan aktivitas Sistem Sesar Sumatera. Pada bagian-bagian tertentu terbentuk depresi dan lembah.

Tersingkapnya batuan Paleozoikum dan terbentuknya jalur perlipatan, intrusi batolit, pensesaran dan lajur depresi serta pembentukan blok pegunungan, menggambarkan sedemikian kuatnya aktivitas tektonik di wilayah ini. Diperkirakan ada empat periode tektonik di wilayah ini, yaitu tektonik Mesozoikum Tengah, Tektonik Kapur Akhir - Tersier Awal, Tektonik Miosen Tengah, dan Tektonik PlioPlistosen (Tjia, 1970). Tektonik Mesozoikum Tengah merupakan kejadian proses tektonik awal di

Sumatera. Akibat tektonik tersebut terjadi deformasi yang berarah barat laut - tenggara, dan pemalihan batuan. Tektonik Miosen Tengah merupakan aktivitas tektonik yang mengakibatkan terangkatnya Bukit Barisan serta terjadinya pensesaran. Sementara tektonik periode Plio-Plistosen mengakibatkan berkembangnya sistem sesar geser menganan Sumatera di sepanjang Bukit Barisan. Kegiatan tektonik ini mengaktifkan kembali sesar-sesar yang telah terbentuk pada periode sebelumnya. Kelurusan-kelurusan yang memotong endapan hasil Gunung Api Malintang dengan arah umum tenggara barat laut merupakan bagian dari hasil kegiatan tektonik ini. Kelurusan tersebut sebagai sesar aktif yang berarah tenggara - barat laut dan merupakan lanjutan dari Zona Sesar Sungai Takung.
Bentuk lahan yang menggambarkan aktivitas tektonik di daerah ini dicirikan oleh gawir sesar, gawir sesar tererosi, dan terdapatnya nendatan. Sementara kelurusan yang membentuk pola yang radial dan melingkar mengelilingi tubuh Gunung Malintang merupakan kelurusan yang dihasilkan oleh kegiatan Gunung Malintang itu sendiri. Kelurusan yang radial merupakan kelurusan yang terbentuk saat terjadi pembumbungan magma ke atas permukaan (up doming), sedangkan kelurusan yang melingkar terbentuk saat dapur magma mengalami kekosongan, sehingga terjadi amblesan di sekitar tubuh Gunung Api Malintang tersebut. Indikasi tersebut di atas menunjukkan bahwa pola sesar yang terdapat di wilayah ini ditafsirkan sebagai sesar aktif (Gambar 14). Sesar-sesar tersebut memengaruhi bentang alam yang terbentuk di sekitar tubuh Gunung Malintang. Kemunculan Gunung Api Malintang diperkirakan melalui zona lemah yang dihasilkan oleh aktivitas Sesar Takung (Hahn \& Weber, 1981).

Di bagian barat daya dan timur daerah penelitian, bentuk lahan diwakili oleh perbukitan memanjang dengan arah barat laut - tenggara, yang disusun oleh batuan Tersier yang telah mengalami perlipatan dan pensesaran. Bagian paling timur daerah penelitian ini termasuk ke dalam perbukitan rendah dan dataran aluvium timur. Sebagian besar daerah ini merupakan cekungan sedimen Tersier yang berfungsi sebagai tempat akumulasi diendapkannya bahan-bahan rombakan dan batuan hasil letusan gunung api.

Pada umumnya, bentuk lahan yang berkembang di wilayah vini merupakan perbukitan yang sudah tertoreh secara kuat. Perbukitan tersebut dipisahkan
menjadi perbukitan berpuncak tak teratur, tertoreh kuat, perbukitan tertoreh sedang, dan pegunungan tertoreh sedang. Bagian paling timur laut daerah ini ditempati oleh bentuk lahan perbukitan homoklin, dan semakin ke arah timur berangsur-angsur menjadi dataran aluvium. Gawir sesar tererosi berkembang dengan baik di wilayah ini. Hal-hal tersebut menjadi indikasi adanya jejak tektonik yang relatif tua dibandingkan dengan gawir sesar yang berkembang di bagian barat dan barat daya penelitian.

KESIMPULAN

- Bentang alam di daerah ini dapat dipisahkan menjadi dua bagian besar, yaitu Bentang Alam Vulkano-tektonik dan Bentang Alam Perbukitan struktur.
- Selanjutnya bentang alam tersebut dapat dipisahkan menjadi beberapa bentuk lahan (landform) berdasarkan bentukan asal (form of origin) dari bentukan asal Gunung Api, Bentukan Asal Fluviatil, Bentukan Asal Fluvio-vulkanik, Bentukan Asal Denudasi, Bentukan Asal Struktur, dan Bentukan Asal Kars.
- Secara umum, dapat dikatakan bahwa proses pembentuk bentang alam di daerah penelitian direpresentasikan baik oleh proses endogen maupun proses eksogen. Bentuk lahan yang merepresentasikan proses eksogen antara lain Bentukan Asal Denudasi, Bentukan Asal Fluviatil, Bentukan Asal Kars, sedangkan yang merefleksikan proses endogen dimanifestasikan sebagai Bentukan Asal Struktur dan Bentukan Asal Vulkanik dan Vulkano-tektonik.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada Ir. Santoso dan Ir. Soemantri Poedjoprajitno atas koreksi, kritik, dan sarannya, sehingga makalah ini menjadi lebih baik. Juga saya sampaikan terima kasih kepada semua pihak yang telah ikut membantu dan memberikan masukan-masukan, sehingga tulisan ini dapat diselesaikan. Terima kasih juga saya sampaikan kepada Dr. Herman Moechtar yang memberikan dukungan moral, sehingga penulis dapat melanjutkan penulisan makalah ini. Kepada Kepala Pusat Survei Geologi, penulis mengucapkan terima kasih atas izinnya, sehingga makalah ini dapat diterbitkan.

Ketarangan :

Gambar 14. Pola struktur sesar aktif daerah Payakumbuh dan sekitarnya.

ACUAN

Hahn. L., and Weber H.S., 1981. The Structure System of west central Sumatera. Geologisches Jahrbuch Reihe B Hebt 47. In Kommission: E. Schweizerbart'sche verslag buchhandlung Stutgart 1 D-700.
Lumbanbatu, U.M., Moechtar, H., Santoso, Hidayat, S., Mulyana, H., 2008. Peta Geologi Lembar Payakumbuh, Sumatera Barat, skala 1:100.000. Pusat Survei Geologi, Bandung.
Poedjoprajitno, S., Yusuf, G., 1993. Peta Geomorfologi DAS Ombilin Sumatera Barat skala 1 : 100.000. Pusat Penelitian dan Pengembangan Geologi Bandung.
Santoso, Hasan, B.S., Soepeno, B.S., 1993. Peta Geomorfologi DAS Sinamar dan sekitarnya, Sumatera Barat, Skala $1: 100.000$. Pusat Penelitian dan Pengembangan Geologi Bandung.
Silitonga, PH., dan Kastowo, 1995. Peta Geologi Lembar Solok, Sumatera, Edisi 2. Pusat Penelitian dan Pengembangan Geologi Bandung.
Tjia, H.D., 1970, Nature of displacement along the Semangko fault zone, Sumatra. Jour. Trop. Geography 30:63-67.

Verstappen, H. Th., 1973. A geomorphological reconnaisance of Sumatra and adjacent island (Indonesia). ITC, Enschede, The Netherlands.
Verstappen, H. Th., 1985. Applied geomorphological survey and natural hazard zoning, ITC syllabus. The Netheriands: 37 pp.
Zuidam R. A. van., 1985. Aerial photo-interpretation in terrain analysis and geomorphologic mapping. Smits publisher, The Hague, The Netheriand.

[^0]Revisi terakhir : 19 Maret 2008

[^0]: Naskah diterima : 23 Maret 2006

