HUBUNGAN ANTARKOMPONEN MIKROFASIES LERENG TERUMBU DAN CEKUNGAN LOKAL TERUMBU BELAKANG BATUGAMPING BIOKLASTIKA FORMASI BATURAJA DI DAERAH SEKITAR MUARADUA, SUMATERA SELATAN

S. Maryanto
Pusat Survei Geologi
JI. Diponegoro No. 57 Bandung

Abstract

SARI Batugamping bioklastika Formasi Baturaja yang tersingkap di daerah Muaradua, Sumatera Selatan merupakan bahan yang cukup baik untuk analisis mikrofasies batugamping. Dari hasil pengamatan di bawah mikroskop polarisasi, dapat disimpulkan bahwa batugamping bioklastika tersebut sebagian besar merupakan endapan lingkungan sayap terumbu dan cekungan lokal terumbu belakang. Uji-T, uji-F, dan uji-P komponen utamanya memperlihatkan adanya beda nyata pada komponen butiran karbonat, butiran terigen, dan material hasil neomorfisme pada kedua lingkungan pengendapan tersebut. Di sisi lain, matriks, semen, dan keporian batuan tidak memperlihatkan adanya beda yang nyata di kedua lingkungan pengendapan tersebut.

Kata kunci: sayap terumbu, terumbu belakang, butiran karbonat, petrografi

ABSTRACT

Bioclastic limestone of the Baturaja Formation cropping out in the Muaradua area, South Sumatera, is a good research object for microfacies analysis. Polarized microscopic study has revealed that the bioclastic limestones are predominantly reef-flank and local back-reef basin deposits. The results of T, F, and P tests of the limestones show a significant difference in their carbonate and terrigenous grains, as well as in their neomorphic materials between the deposits. On the other hand, their matrices, cements, and porosities are of no significant difference.

Keywords: reef-flank, back-reef, carbonate grains, petrography

PENDAHULUAN

Hasil-hasil penelitian tentang batugamping cukup berkembang pesat sesuai munculnya konsep-konsep terbaru di dalam disiplin ilmu geologi, misalnya konsep sekuen stratigrafi (Waite, 2002; Kendall, 2005). Kemajuan penelitian batugamping di bawah mikroskop polarisasi juga tidak kalah berkembang. Banyak peneliti terdahulu selalu mencantumkan penampakan visual batugamping secara megaskopis dan mikroskopis, yang dilengkapi dengan keterangan jenis dan jumlah komponen serta interpretasi proses diagenesis yang telah berlangsung (Bathurst, 1975; Scholle, 1978; Longman, 1980; Flugel, 1982; Tucker \& Wright, 1990; James, 1991; Adams \& MacKenzie, 1998; Ulmer-Scholle \& Mosley, 2000; Railsback, 2002; Waite, 2002; Kendall, 2005; dan Gregg, 2005). Dengan demikian, petrografi batugamping, secara khusus aspek mikrofasies, merupakan topik kajian yang cukup menarik (Maryanto, 2007a).

Istilah mikrofasies pertama kali dikemukakan oleh Brown (1943 dalam Flugel, 1982), dan didefinisikan sebagai karakter total paleontologi dan sedimentologi y'ang dapat dikelompokkan berdasarkan data sayatan pipih atau percontoh poles. Mikrofasies dipakai untuk mengidentifikasi lingkungan pengendapan berdasarkan data petrografi. Dengan demikian, data dasar yang digunakan dalam tulisan ini adalah petrografi, termasuk klasifikasi batugamping secara petrografis berdasarkan tekstur pengendapan yang dibuat oleh Dunham (1962; Gambar 1).
Beberapa variabel di dalam batugamping, yang sifatnya multivariat, tentu mempunyai karakter tersendiri sesuai dengan jenis batugamping. Pembagian mikrofasies oleh Flugel (1982; Tabel 1) meliputi dua puluh empat tipe mikrofasies standar berdasarkan penampakan yang berkaitan dengan jenis dan ciri khusus pada batugamping, yang mengacu kepada pembagian zona fasies menurut Wilson (1975; Gambar 2). Acuan tersebut dipakai di dalam tulisan ini.

Komponen Asli Tidak Terbentuk Pada Saat Pengendapan				Komponen Asli Terbentuk Bersama Pada Saat Pengendapan
Mengandung Lumpur			Tanpa Lumpur	
Terdukung Lumpur		Terdukung Butiran		
Butiran < 10% MUDSTONE	Butiran $>10 \%$ WACKESTONE	PACKSTONE	GRAINSTONE	BOUNDSTONE
		800:8!	205098	

Gambar 1. Klasifikasi batugamping menurut Dunham (1962) berdasarkan tekstur pengendapan batuan.

Gambar 2. Pembagian tipe standar mikrolasies (Flugel, 1982) yang merupakan perkembangan dari pembagian zona tasies (Wilson, 1975).

Tabel 1. Klasifikasi Tipe Mikrolasies (Flugel, 1982) Dengan Karakter Khususnya Dalam Kaitannya Dengan Klasifikasi Zona Fasies Menurut Wilson (1975)

SMF	PENAMPAKAN	ZONA FASIES
1	Spikulit. Mudstone alau wackestone lempungan kaya organisme spikule Terarah.	FZ1. Cekungan laut dalam dengan pengendapan lambat.
2	Mikrobioklastika kalsilit. Grainstone - packstone berukuran sangat halus dengan gelemburarus.	Fz1. FZ2. Landaian laut terbuka dekat lereng bawah.
3	Mudstone dan wackestone. Matriks lumpuran dengan beberapa organisme planktonik.	FZ1 dan FZ3
4	Mikrobreksi atau packstone. Butiran terabrasi, beriapis susun. Hadir kuarsa dan butiran lain.	Fz3; FZ4. Runtuhan lereng depan
5	Grainstone-packstone atau floatstone. Dengan bioklastika pembangun dan penghuniterumbu.	FZ4. Fasies sayap terumbu.
6	Rudstone terumbu dengan bioklastika berukuran besar atau runtuhan terumbu.	FZ4. Lereng terumbu depan, runtuhan terumbu berarustinggi.
7	Boundstone dengan organisme in-situ. Subtipe framestone, bindstone dan bafliestone.	FZ5. Terumbu organik, di tepi paparan.
8	Wackestone dengan organisme utuh di dalam lumpur. Epitauna dan infauna terawelkan baik.	FZ2; FZ7. Landaian laguna dengan sirkulasi terbuka.
9	Bioklastika wackestone dengan Kepingan tosil beragam, bioturbasi dan pemikritan.	FZ2; FZ7. Laut dangkal dengan sirkulasi terbuka.
10	Packstone-wackestone dengan bioklastikayang rata dan terabrasi.	FZ2; FZ7. Tekstur inversi pada cekungan lokal.
11	Grainstone dengan bioklastika yang rata dan terabrasi di dalam semen karbonat.	F26. Paparan berangin yang berada di atas gelombang.
12	Kokuina packstone, grainstone atau rudstone dengan konsentrasi (osil seperti ganggang.	FZ6. Umumnya di tepi lerengan dan landaian.
13	Grainstone oncoid atau biosparit.	FZ6. Laut sangat dangkal dengan energi sedang.
14	Lags dengan butiran rata dan terabrasi bercampur dengan oolit, kadang dengan fosfat dan lithoklas.	Fz6. Pengendapan material kasar pada paparan berangin.
15	Oolitterpilah bagus, dengan lapisan berstrukkur silang-siur.	Fz6. Energi tinggi, merupakan gundukan panta/gisik.
16	Grainstone dengan pelet dan kadang dengan konsmtrasi fosil moluska alau foraminifera.	27. Fz8. Laut dangkal sangat hangat dengan sirkulasi sedang.
17	Grapestone atau grainstone dengan agregat butiran, peloid dàn partikel terabrasi.	F27. F28. Landaian bersirkulasi terbatas, dalaran pasang-surut.
18	Grainstone dengan konsentrasi foraminitera dan alau ganggang merah.	FZ7. F28. Gundukan pasang-surut dan saluran laguna.
19	Laferit, perarian mudstone-wackestone struktur fenestral, moluska, foraminitera dan ganggang.	FZ8. Bentukan teluk atau kubangan yang sangal terbatas
20	Mudstone ganggang stromatolit.	FZ9. Sering di zona pasang-surut.
21	Mudstone spongiostrom dengan pola tumpukan ganggang pada material lumpur karbonat.	FZ8. Gundukan pasang-surut
22	Wackestone atau floalstone dominan mikrit dengan oncolite berukuran besar.	FZ8. Laut dangkal tepi gundukan atau saluran terumbu belakang.
23	Lumpur karbonat homogen dan pejal yang kadang-kadang dengan mineral penguapan.	FZ8. FZ9. Gundukan pasang-surut yang salinitasnya tinggi.
24	Rudstone atau floatstone dengan litoklastika dan bioklastika kasar, kadang silang-siur dan imbrikasi.	FZ8. Saluran pasang-surut atau breksi intraformasional.

MASALAH DAN TUJUAN

Batugamping bioklastika Formasi Baturaja di sekitar Muaradua, Sumatera Selatan, memunculkan masalah utama, yaitu sejauh mana besaran dan bentuk hubungan antarkomponen penyusun batuan yang terendapkan di lingkungan lereng terumbu dan cekungan lokal terumbu belakang. Tulisan ini bertujuan untuk mengetahui sejauh mana perubahan komponen batugamping yang terjadi di kedua lingkungan pengendapan tersebut, yang dihipotesiskan memang ada perbedaan yang nyata.

METODE PENELITIAN

Pengumpulan data lapangan dilakukan berdasarkan hasil observasi langsung di bebefapa lintasan terpilih. Pengamatan dan pencatatan data lapangan yang diutamakan meliputi: identifikasi batuan, warna batuan, struktur lapisan, struktur sedimen, identifikasi arus purba, kandungan fosil, geometri lapisan, dan penampakan khas lainnya Pengambilan percontoh batugamping dilakukan dengan metode stratified random sampling.

Pekerjaan laboratorium yang terutama adalah pengujian petrografi secara kuantitatif, dengan skala interval. Jumlah dan jenis semua komponen batugamping dihitung secara dua dimensi dengan point counter, masing-masing percontoh sebanyak 300 titik hitung. Aspek petrografi yang penting untuk diidentifikasi meliputi: 1) proporsi komponen utama batugamping, seperti butiran karbonat, butiran terigen, matriks, semen, material neomorfisme, dan keporian batuan, 2) identifikasi jenis dan karakter masing-masing komponen batugamping, 3) tekstur batuan yang meliputi kemas, pemilahan, bentuk butiran, hubungan butiran, dan ukuran butiran.

STRATIGRAFI REGIONAL

Di daerah sekitar Muaradua, Sumatera Selatan, dijumpai batugamping Formasi Baturaja, yang tersebar melingkar di sebelah selatan hingga sebelah timur Gunung Garba yang dilandasi oleh batuan Pratersier (Gafoer dkk., 1993; Gambar 3). Batuan Formasi Baturaja pada umumnya terendapkan di lingkungan terumbu belakang yang merupakan bagian tepi cekungan pada kala Miosen Awal. Penampakan paling menonjol adalah kehadiran
batugamping bioklastika berlapis, yang dapat diamati langsung di lintasan terpilih.
Secara stratigrafis, Formasi Baturaja terendapkan di atas batuan sedimen klastika atau batuan gunung api Tersier Awal dan ditindih beberapa satuan batuan sedimen klastika dan batuan gunung api hingga batuan Kuarter (Gafoer dkk., 1993; Gambar 3). Seluruh bagian formasi ini dipakai sebagai objek penelitian. Percontoh batuan diambil dari tiga lintasan pengukuran litostratigrafi terperinci meliputi Lintasan Air Saka, Lintasan Air Malau, dan Lintasan Air Rambangnia. Ketiga lintasan tersebut dipilih karena batuan tersingkap baik dengan urutan litostratigrafi yang terwakilkan cukup lengkap, dari bagian bawah hingga teratas satuan batuan. Lintasan Air Saka berjarak sekitar 6 km di barat Lintasan Air Malau, dan Lintasan Air Rambangnia berjarak sekitar 30 km sebelah timur Lintasan Air Malau (Maryanto, 2007a).

PETROGRAFI DAN VERIFIKASI DATA

Petrografi

Sejumlah delapan puluh sembilan percontoh batugamping telah diambil dari tiga lintasan pengukuran stratigrafi terperinci untuk diuji petrografi. Pengujian petrografi dilakukan dengan mikroskop polarisasi Leica-DMRP, yang dilengkapi point counter Swift-F untuk menghitung komponen batuan secara kuantitatif, dan kamera mikroskop untuk pembuatan mikrofoto (Gambar 4). Berdasarkan hasil uji petrografi terperinci yang telah dilakukan, batuan karbonat yang ada di daerah penelitian dapat dikelompokkan menjadi beberapa jenis batuan, meliputi jenis-jenis batugamping bioclastic wackestone, clayey bioclastic wackestone, bioclastic packstone, sandy bioclastic packstone, clayey bioclastic packstone, grainstone, sandy bioclastic grainstone, grainstone/rudstone, bioclastic wackestone/floatstone, bioclastic packstone/floatstone, bioclastic packstone/ rudstone, dan boundstone (Tabel 2).

Komponen Butiran

Komponen butiran yang dijumpai di dalam batuan dikuasai oleh bioklastika, selain beberapa intraklas, pelet, dan butiran terigen yang jumlahnya terbatas.

Gambar 3. Peta geologi daerah sekilar Muaradua, Sumatera Selatan (Gatoer dkk., 1993) dan Iokasi pengambilan percontoh batugamping (Maryanto, 2007a).

Gambar 4. Mikroskop polarisasi Leica-DMRP,dilengkapi point counter Switt-F yang digunakan pada pengujian petrografi terperinci batugamping Formasi Baturaja di daerah penelitian.

Tabel 2. Hasil Uji Pelrografi Maryanto, 2007a) Yang Memperlihatkan Persentase Komponen Penyusun, Nama Batuan, dan Mikrotasies

NO.	Kode percontoh	PERSENTASE KOMPONEN						Nama Batuan	SMF/FZ
		Butiran Karbonat	Butiran Terigen	Matriks	Semen	Neomorfisme	Keporian Batuan		
1	SM102A	46,32	11,66	-18,00	9,00	10,33	4,67	$B P$	3/3
2	SM102B	41,00	0,67	14,00	7.67	35,67	1,00	$B P / F$	5/4
3	SM103	25,67	6,01	25,00	6,00	34,33	3,00	BW	$3 / 3$
4	SM104	32,34	5,68	29,33	5.00	26,00	1,66	BW	$3 / 3$
5	SM105	50,68	0,33	31,33	6.33	9,67	1,66	$B P$	12/6
6	SM106	38,34	2,67	12,00	8.33	36,00	2,67	$B P$	$10 / 7$
7	SM107A	90,99	0,00	0,00	5,67	2,00	1,34	G/R	5/4
8	SM107B	20,68	1,33	7,00	6,00	63,00	2,00	BW	$9 / 7$
9	SM107C	31,69	3,33	54,00	5,66	4,67	0.67	CBW	9/7
10	SM108	68,67	0,00	19,33	7.00	3,00	2,00	B/Bi	7/5
11	SM109A	42,67	0,67	11,33	1,34	35,67	8.33	$8 / 8 i$	7/5
12	SM109B	57,68	0,33	20,67	7.67	11,00	2.67	B/B	7/5
13	SM110A	57,34	0,67	17,33	9.67	12,67	2,33	B/Bi	7/5
14	SM110B	37,01	0,33	44,00	8,67	8,33	1,67	$B W$	$9 / 7$
15	SM110C	46,66	0.66	20,33	11,00	19,67	1,67	BP	5/4
16	SM111	58,00	0,67	21,67	6,34	10,67	2,67	BP/F	5/4
17	SM112A	51,00	0,00	21,67	10.00	16,00	1,34	BP/F	5/4
18	SM112B	63,35	0,33	0,00	30,00	3,00	3,33	BG	12/6
19	SM112C	30,02	0,67	50,33	5,00	12,00	2,00	BW/F	5/4
20	SM112D	55,33	0,00	26,00	13,34	3,00	2,33	$B / B i$	7/5
21	SM112E	46,01	0,99	12,67	11,34	24,33	4.67	B/BI	$7 / 5$
22	SM112F	54,34	2,00	18,00	7.00	12,00	6,67	BP/F	5/4
23	SM113	12,68	1,33	5,00	13,67	63,00	4,34	BW	$9 / 7$
24	SM115A	57,34	7,33	0,00	20,00	12,00	3,34	BG	5/4
25	SM115B	35,01	0,33	45,34	7.34	10,67	1,33	BW/F	5/4
26	SM117C	36,32	3,67	28,33	7,33	21,67	2,67	BW	3/3
27	SM118	51,68	4,00	3,33	13,00	26,00	2.00	$B P$	$3 / 3$
28	Sm120	10,33	2,67	0,00	2,67	83,33	1,00	BW	3/3
29	SM201C	37,00	5,33	12,67	11,33	31,01	2,67	BP	10/7
30	SM202A	49,34	1,34	36,34	9,34	2.33	1,33	$B P$	10/7
31	SM202B	54,65	0,67	5,00	11,34	25,99	2,33	$B / B i$	7/5
32	SM202C	25,01	0,00	4,67	1.67	65,97	2.67	$B / B i$	7/5
33	SM203A	50,99	0,00	26,00	9,67	9,00	4,34	BP/F	5/4
34	SM203B	35,99	2,33	46,00	8,67	5,67	1,34	BW/F	$5 / 4$

Tabel 2. Lanjutan

NO.	Kode percontoh	PERSENTASE KOMPONEN						Nama Batuan	SMF/FZ
		Butiran Karbonat	Butiran Terigen	Matriks	Semen	Neomorfisme	Keporian Batuan		
35	SM204	62,98	0,33	13,33	5,34	15,66	2,34	BP/F	5/4
36	SM205A	32,32	0,00	33,67	16,34	16,33	1,34	BW/F	5/4
37	SM205B	48,68	0,00	33,33	10,00	6,33	1,67	$B / B i$	7/5
38	SM205C	51,01	0,33	32,67	8,01	7,00	1,00	$B / B i$	7/5
39	SM205D	57,36	6,33	7,00	7.00	16,00	6.33	BP	5/4
40	SM206A	33,02	0,00	44.67	9,67	11,34	1,33	BW/F	5/4
41	SM206B	33,01	1,34	47,67	8,00	8,67	1,33	BW/F	5/4
42	SM207A	45,67	0,00	7,67	3,33	42,33	1,00	BP/F	5/4
43	SM207B	36,66	0,67	38,33	10,66	13,00	0,67	BW/F	5/4
44	SM208A	52,00	1,00	20,67	11,00	13,33	2,00	BP/F	5/4
45	SM208B	35,67	1,00	45,00	5,66	11,34	1,33	BW/F	5/4
46	SM208C	62,32	0,00	18,67	8,33	9,00	1.67	BP/F	5/4
47	SM209	33,34	0,00	35,00	5,01	25,33	1,33	$B W$	10/7
48	SM210A	31,34	0,00	53,00	8,67	5,33	1,66	BW	10/6
49	SM210B	37,67	2.67	35,67	6,67	13,66	3,67	BP	10/7
50	SM211A	48,34	0,67	23,33	13,67	13,33	0,67	BP/F	5/4
51	SM2118	61,32	0,00	10,00	10,00	13,00	5,67	BP/F	5/4
52	SM212	50,34	0,00	14,67	8,34	24,00	2,67	BP/F	5/4
53	SM213A	50,34	0,00	25,67	9,33	12,33	2,33	BP	5/4
54	SM213B	41,00	8,67	35,33	7,34	6,00	1,66	BP/F	12/6
55	SM213C	30,01	19,33	8,33	12.00	24,66	5,67	SBP	12/6
56	SM302B	51,33	3,33	0,00	12,34	31,66	1,33	BG	11/6
57	SM303A	42.99	12,00	35.66	3.00	0,00	6,33	SBP	12/6
58	SM303B	41,34	16,32	4.67	3,67	33,00	1,00	SBP	12/6
59	SM304A	16,99	5,34	22,00	2.67	52,33	0,67	$B W$	$10 / 7$
60	SM304C	14,67	2,33	0,00	1,00	81,00	1,00	$B W$	19/8
61	SM304D	12,34	0,00	0,00	7.67	75,67	4,33	$B W$	19/8
62	SM305A	27,01	4,34	53,33	5.33	8,34	1.67	$B W$	10/7
63	SM305B	22,68	3,68	10,33	7.00	53,33	3,01	$B W$	$10 / 7$
64	SM305C	13,34	2,33	15,00	4.67	62,00	2.67	$B W$	19/8
65	SM314A	16,34	10,34	6,00	9,67	55,99	1,67	BW	10/7
66	SM314B	35,00	2,66	26,67	7,00	27,66	1.00	$B W$	10/7
67	SM315A	31,99	3,33	40,00	9.67	14,34	0.67	$B W$	10/7
68	SM3158	37,66	1,00	39,33	9.00	11,67	1,33	BW/F	$5 / 4$
69	SM316A	40,67	5,67	23,33	10,34	18,00	2.00	BP/F	5/4
70	SM316B	47,66	5,01	13,67	7,34	23.00	3,34	BP	10/7
71	SM317A	59,32	4.34	10,67	7,34	16,67	1,67	$B P$	5/4
72	SM317B	18,00	1,34	10,00	2,34	67.67	0,67	BW	10/7
73	SM317B	18,00	1,34	10,00	2,94	67,67	0,67	BW	10/7
74	SM318A	54,01	4,67	9,33	13,34	13,00	5.67	BP	5/4
75	SM318B	23,67	0,33	10,00	5,67	57,33	3,00	BW	10/7
76	SM320A	52,66	0,67	19,33	7,33	14,34	5,66	$B P$	5/4
77	SM320B	40,68	10,68	15,33	10,33	19,67	3,33	$B P$	10/7
78	SM321A	25,34	1,33	13,33	5,67	52,68	1,67	$B W$	$10 / 7$
79	SM321B	23,33	0,33	17,67	56,01	25,34	0,67	$B W$	19/5
80	SM323A	36,99	2,67	13,00	6,66	37,67	3.01	$B W$	3/3
81	SM323B	51,34	2,00	22,33	7,33	7,67	9,34	${ }^{B P}$	107
82	SM323C	33,33	2.01	36,33	4,00	23,67	0,67	$B W$	$10 / 7$
83	SM323D	49,68	1,34	14,33	17,00	16,33	1,33	$B^{B P}$	1077
84	SM323E	36,68	1,33	21,33	9.34	23,00	8,34	$B W$	19/8
85	SM324A	67,67	0,67	0,00	17,00	9.00	5,67	BG	12/6
86	SM324B	75,99	2,67	0,00	10,00	7.67	3,67	BG	12/6
87	SM324C	73,01	3,00	0,00	11,00	11.00	2,00	$B G$	12/6
88	SM325A	53,00	3,67	6,00	7.33	27.67	2,33	$B P$	10/7
89	SM325B	44,00	1,33	17,33	10,67	15,67	11,00	$B P$	$10 / 7$

[^0]Secara umum, komponen bioklastika selalu hadir pada seluruh batugamping yang ada. Komponen bioklastika ini terdiri atas fosil beragam jenis, ukuran, dan jumlahnya. Namun demikian, jenis fosil yang menguasai batuan dapat diidentifikasi secara terperinci, seperti moluska, ganggang merah, foraminifera, dan koral. Jenis fosil lainnya hanya sebagai ikutan saja yang jumlahnya kurang berarti. Komponen intraklas atau ekstraklas hadir di beberapa batuan, khususnya pada batugamping yang berukuran sedang hingga kasar. Komponen ini tersebar tidak merata, dan terdiri atas batugamping terumbu, batugamping bioklastika, dan batugamping lumpuran. Komponen pelet hadir terbatas, berupa butiran sangat halus yang kadang kala tergantikan. Komponen oolit sangat langka dijumpai di dalam batuan dengan jumlah sangat terbatas.
Butiran terigen masih hadir pada beberapa percontoh batuan dengan jumiah terbatas dan tersebar tidak merata. Butiran ini terdiri atas kuarsa, felspar, kepingan batuan gunung api, kepingan batuan sedimen khususnya batulempung argilit, kepingan batuan malihan, kepingan batuan tak terperi, sangat jarang glaukonit, fosfat, mika, mineral opak bijih, dan kepingan tumbuhan.

Matriks dan Semen

Matriks lumpur karbonat pada packstone, wackestone, mudstone, dan boundstone sering kali telah tergantikan menjadi mikrosparit, bahkan kadang kala telah terhablurulang membentuk pseudosparit bersama-sama dengan butiran karbonat. Matriks mineral lempung pada umumnya tidak terpisahkan dengan lumpur karbonat. Namun demikian, pada beberapa percontoh terlihat bahwa mineral lempung telah tersegregasi akibat diagenesis atau teroksidasi.
Material penyemen selalu hadir di dalam batuan dengan jumlah beragam. Penyemen utama batuan adalah ortosparit. Kebanyakan ortosparit yang hadir adalah ortosparit lingkungan meteorik freatik, diikuti ortosparit lingkungan laut, ortosparit lingkungan penimbunan, dan sangat jarang ortosparit lingkungan meteorik vadose. Penyemen kedua adalah oksida besi yang jumlahnya terbatas dengan bentuk dan penyebaran tidak teratur, khususnya mengisi rongga dan retakan di dalam batuan. Mineral lempung autigenik kadang-kadang hadir sebagai penyemen, dan terkonsentrasi sebagai pengisi rongga pelarutan. Penyemen lainnya adalah silika,
berupa kuarsa, felspar, dan zeolit yang hadir dari lingkungan meteorik freatik pascapenyemenan oleh ortosparit.

Material Sekunder

Material sekunder hasil neomorfisme, yaitu penggantian, penghabluran ulang, dan pendolomitan, selalu hadir di dalam batuan dengan jumlah sangat beragam sesuai dengan intensitas diagenesis batuannya. Mikrosparit hadir sebagai pengganti lumpur karbonat, baik pada matriks maupun pada isi rongga fosil. Pseudosparit merupakan hasil penghabluran ulang komponen tanpa seleksi kemas, yaitu butiran karbonat, lumpur karbonat, mikrosparit, dan ortosparit. Dolomit hadir terbatas yang pada umumnya bersifat nonbesian, ukuran beragam sesuai dengan ukuran butiran atau halbur asal. Dolomit berhablur sangat halus anhedral mozaik granular hingga sukrosik sebagai pengganti matriks, sedangkan dolomit yang berhablur agak kasar mozaik anhedral sebagai pengganti butiran. Pirit hadir terbatas dengan penyebaran tidak teratur dan berukuran hablur sangat halus anhedral.

Keporian

Keporian batuan hadir buruk hingga sangat buruk pada seluruh batuan. Tipe keporian primer yang teramati adalah antar partikel, dalam partikel, pertumbuhan terumbu (growth framework), fenestral, dan she/ter. Tipe keporian sekunder yang ada meliputi gerowong (vug), cetakan, retakan, dan antarhablur.

Verifikasi Data

Metode pemisahan populasi sesuai dengan klasifikasi standar mikrofasies menurut Flugel (1982). Hasil analisis petrografi terperinci memperlihatkan ada beberapa kelas mikrofasies batugamping yang dijumpai di daerah penelitian (Tabel 2). Namun demikian, sesuai dengan jumlah percontoh yang didapatkan pada masing-masing grup mikrofasies, maka batuan yang terendapkan di mikrofasies sayap terumbu (smf 5; Grup 1) sejumlah 28 percontoh dan mikrofasies cekungan lokal terumbu belakang (smf 10 ; Grup 2) sejumlah 21 percontoh yang memenuhi syarat untuk diverifikasi lebih lanjut (Tabel 3). Data pengujian petrografi terperinci terhadap komponen utama batuan pada kedua grup mikrofasis tersebut tampak terdistribusi normal (Gambar 5).

Geo-resource

Hasil uji beda yang dilakukan terhadap masingmasing komponen utama batuan menunjukkan bahwa ada beda nyata antara dua grup mikrofasies batugamping tersebut (Tabel 4), terutama pada komponen butiran karbonat, butiran terigen, dan material neomorfisme. Ketiga komponen utama batugamping ini mempunyai jumlah terbanyak di setiap pengujian petrografi. Meskipun secara umum
antara kedua lingkungan mikrofasies tersebut dijumpai perbedaan yang nyata (nilai $p<0,0047$), baik merupakan peningkatan maupun penurunan jumlah komponen (Gambar 6), akan tetapi masih ada sebagian komponen yang menunjukkan kesamaan karakter. Kesamaan karakter ini terjadi pada komponen matriks, semen, dan keporian batuan.

Gambar 5. Histogram yang menggambarkan distribusi komponen utama batugamping pada Smf 5 (bagian kiri) dan Smf 10 (bagian kanan).

Tabel 3. Hasil Uji Petrograli Pada Grup Mikrofasies Sayap Terumbu (1) dan Cekungan Lokal Terumbu Belakang (2) Untuk Diverifikasi

NO.	Kode percontoh	Grup	Butiran Karbonat	Butiran Terigen	Matriks	Semen	Neomorfisme	Keporian Batuan
1	SM102B	1	41,00	0,67	14,00	7,67	35,67	1,00
2	SM110C	1	46,66	0,66	20,33	11,00	19.67	1,67
3	SM111	1	58,00	0,67	21,67	6,34	10,67	2,67
4	SM112A	1	51,00	0,00	21,67	10,00	16,00	1,34
5	SM112C	1	30,02	0,67	50,33	5,00	12,00	2,00
6	SM112F	1	54,34	2,00	18,00	7,00	12,00	6,67
7	SM115B	1	35,01	0,33	45,34	7,34	10,67	1,33
8	SM203A	1	50,99	0,00	26,00	9,67	9,00	4,34
9	SM203B	1	35,99	2,33	46,00	8,67	5,67	1,34
10	SM204	1	62,98	0,33	13,33	5,34	15,66	2,34
11	SM205A	1	32,32	0,00	33,67	16,34	16,33	1,34
12	SM205D	1	57,36	6,33	7,00	7,00	16,00	6,33
13	SM206A	1	33,02	* 0,00	44,67	9,67	11,34	1,33
14	SM206B		33,01	1,34	47,67	8,00	8,67	1,33
15	SM207A		45,67	0,00	7,67	3,33	42,33	1,00
16	SM207B	1	36.66	0,67	38,33	10,66	13,00	0,67
17	SM208A	1	52,00	1.00	20,67	11,00	13,33	2,00
18	SM208B	1	35,67	1,00	45,00	5,66	11,34	1,33
19	SM208C	1	62,32	0,00	18,67	8,33	9,00	1,67
20	SM211A	1	48,34	0,67	23,33	13,67	13,33	0,67
21	SM211B	1	61,32	0,00	10,00	10,00	13,00	5,67
22	SM212	1.	50,34	0,00	14,67	8,34	24,00	2,67
23	SM213A	1	50,34	0,00	25,67	9,33	12,33	2,33
24	SM315B	1	37,66	1,00	39,33	9,00	11,67	1,33
25	SM316A	1	40,67	5,67	23,33	10,34	18,00	2,00
26	SM317A	1	59,32	4,34	10,67	7,34	16,67	1,67
27	SM318A	1	54,01	4,67	9,33	13,34	13,00	5,67
28	SM320A	1	52,66	0,67	19,33	7.33	14,34	5,66
29	SM106	2	38,34	2,67	12,00	8,33	36,00	2,67
30	SM210C	2	37,00	5,33	12,67	11,33	31,01	2,67
31	SM202A	2	49,34	1,34	36,34	9,34	2,33	1,33
32	SM209	2	33,34	0,00	35,00	5.01	25,33	1,33
33	SM210A	2	31,34	0,00	53,00	8,67	5,33	1,66
34	SM210B	2	37,67	2,67	35,67	6,67	13,66	3,67
35	SM304A	2	16,99	5,34	22,00	2.67	52,33	0,67
36	SM305A	2	27,01	4,34	53,33	5,33	8,34	1,67
37	SM305B	2	22,68	3,68	10,33	7,00	53,33	3,01
38	SM314B	2	35,00	2,66	26,67	7.00	27,66	1,00
39	SM315A	2	31,99	3,33	40,00	9,67	14,34	0,67
40	SM316B	2	47,66	5,01	13,67	7,34	23,00	3,34
41	SM317B	2	18,00	1,34	10,00	2,34	67,67	0,67
42	SM318B	2	23,67	0,33	10,00	5,67	57,33	3,00
43	SM321A	2	25,34	1,33	13,33	5,67	52,68	1,67
44	SM323B	2	51,34	2,00	22,33	7,33	7,67	9,34
45	SM323C	2	33,33	2,01	36,33	4,00	23,67	0,67
46	SM323D	2	49,68	1,34	14,33	17,00	16,33	1,33
47	SM325A	2	53,00	3,67	6,00	7.33	27,67	2,33
48	SM325B	2	44,00	1,33	17,33	10,67	15,67	11,00
49	SM326	2	54,67	2,67	18,34	6,00	16,67	1,67

PEMBAHASAN

Terjadinya perbedaan jumlah komponen utama batugamping berkaitan erat dengan kedekatan sumber bahan klastika karbonat dan mekanisme pengendapan batuan. Lingkungan sayap terumbu relatif lebih dekat dengan inti terumbu yang menjadi sumber batugamping bioklastika daripada lingkungan cekungan lokal terumbu belakang. Sebagai konsekuensinya, bagian terbesar batuan yang terendapkan di lingkungan sayap terumbu terdiri atas batugamping kaya butiran karbonat dan miskin lumpur karbonat. Keadaan sebaliknya terjadi di lingkungan cekungan lokal terumbu belakang. Penurunan atau peningkatan terjadi pada beberapa variabel komponen penyusun batugamping di daerah penelitian.

Komponen butiran karbonat di lingkungan sayap terumbu yang mempunyai rerata jumlah 46,73 \% menurun menjadi 36,25 \% di lingkungan cekungan lokal terumbu belakang. Penurunan jumlah komponen butiran karbonat, yang terdiri atas bioklastika serta jarang intraklastika dan pelet, dari lingkungan sayap terumbu ke lingkungan cekungan lokal terumbu belakang berkaitan dengan kedekatan jarak geografi sumber bahan klastika batugamping. Mekanisme pengendapan batugamping bioklastika di lingkungan sayap terumbu masih dipengaruhi oleh pelongsoran inti terumbu dengan energi yang relatif masih tinggi (Bathurst, 1975; Wilson, 1975; Read, 1985; Tucker \& Wright, 1990). Cukup banyak komponen butiran karbonat inti terumbu yang
berukuran kasar bercampur dengan komponen fosil bentonik di lingkungan pengendapan ini (Gambar 7). Hal sebaliknya terjadi di cekungan lokal terumbu belakang. Di lingkungan ini pengaruh fragmentasi dan pencucian butiran karbonat telah terjadi dengan baik dan menyebabkan butiran karbonat menjadi berkurang jumlahnya (Gambar 8) dan fosil yang terdapat berupa kepingan.

Komponen butiran terigen di lingkungan sayap terumbu yang mempunyai rerata jumlah 1,25 \% meningkat menjadi 2,49 \% di lingkungan cekungan lokal terumbu belakang. Terjadinya peningkatan jumlah Komponen butiran terigen lingkungan sayap terumbu ke lingkungan cekungan lokal terumbu belakang tidak terlepas dari sumber material asal darat yang terbawa dari tinggian melewati saluran bawah laut menuju ke cekungan lokal terumbu belakang (Gambar 9). Meskipun demikian, tidak semua material asal darat terawetkan dan menjadi pencampur batugamping bioklastika di daerah penelitian. Butiran kuarsa, felspar, dan kepingan batuan beku merupakan pencampur yang paling sering muncul.

Komponen material hasil proses neomorfisme di lingkungan sayap terumbu yang mempunyai rerata jumlah 15,16 \% meningkat menjadi 27,52 \% di lingkungan cekungan lokal terumbu belakang. Material hasil proses neomorfisme meningkat jumlahnya dari lingkungan sayap terumbu ke lingkungan cekungan lokal terumbu belakang. Material tersebut terutama adalah mikrosparit
pengganti matriks lumpur karbonat, pseudosparit pengganti butiran karbonat, dan dolomit pengganti keduanya atau pengganti isian rongga keporian batuan. Dari ketiga sumber bahan tersebut, tampaknya material hasil proses neomorfisme paling banyak berasal dari matriks lumpur karbonat. Diagenesis batugamping yang berlangsung segera sesudah pengendapan batuan merupakan proses geologi yang paling bertanggung jawab terhadap peningkatan jumlah material hasil proses neomorfisme ini (Railsback, 2002; Maryanto, 2007b).

Proses neomorfisme kurang aktif pada batugamping yang terendapkan di lingkungan sayap terumbu apabila dibandingkan dengan batugamping yang terendapkan di lingkungan cekungan lokal terumbu belakang. Hadirnya sejumlah besar butiran karbonat pada batugamping yang terendapkan di lingkungan sayap terumbu menjadi perisai proses neomorfisme (Bathurst, 1975; Kendall, 2005; Maryanto, 2007b). Dengan demikian, matriks lumpur karbonat pada batuan tersebut masih terawetkan hingga sekarang. Di pihak lain, proses neomorfisme lebih aktif teriadi pada batuan yang terendapkan di lingkungan cekungan lokal terumbu belakang. Keaktifan proses neomorfisme ini terutama adalah penggantian matriks lumpur karbonat. Hasil akhir yang tampak di dalam analisis petrografi matriks lumpur karbonat tidak memperlihatkan beda nyata pada kedua lingkungan pengendapan tersebut. Sejauh mana proses neomorfisme bertanggung jawab terhadap perubahan tersebut, tidak dibahas di dalam tulisan ini.

Komponen utama batugamping yang lain, seperti matriks lumpur karbonat, semen karbonat, dan keporian batuan relatif terdistribusi homogen, baik di lingkungan sayap terumbu maupun di lingkungan cekungan lokal terumbu belakang. Meskipun demikian, tidak tertutup kemungkinan bahwa di antara komponen batugamping tersebut pada awalnya dijumpai perbedaan yang nyata, seperti halnya yang terjadi pada matriks lumpur karbonat yang berkurang akibat proses neomorfisme di lingkungan cekungan lokal terumbu belakang.

Identifikasi jumlah masing-masing komponen yang dilakukan pada tulisan ini semata-mata merupakan hasil akhir dari seluruh rangkaian proses
pengendapan dan diagenesis batugamping yang terekam sekarang. Guna studi proses diagenesis dan perkembangan keporian lebih lanjut, seyogyanya dilakukan penghitungan dan koreksi jumlah komponen antarwaktu selama proses diagenesis berlangsung, mulai dari lingkungan diagenesis laut, penimbunan, hingga meteorik. Jenis proses diagenesis yang cukup beragam pada batugamping, seperti bioturbasi, pengerakan lumpur, penyemenan, pemampatan, pendolomitan, penstilolitan, peretakan, dan pelarutan merupakan faktor penentu untǔk studi perkembangan keporian batugamping.

Gambar 7. Sayatan pipih batugamping bioklastika packstone dari mikrolasies sayap terumbu yang memperlihatkan tosil ganggang merah Lithophyllum dan butiran lain di dalam matriks lumpur karbonat. Kode percontoh SM105, kedudukarlensa nikol bersilang.

Gambar 8. Sayatan pipih batugamping wackestone dari lingkungan celungandokal terumbu belakang yang memperlihatkan butiran fosil foraminifera bentonik Lepidocyclina sp. dan ortosparit pengisi rongga cetakan moluska. Kode percontoh SM112A, kedudukan lensa nikol bersilang.

Gambar 9. Kedudukan daerah penelitian di dalam kerangka pengendapan regional kala Miosen Awal yang berada di lingkungan sayap terumbu hingga cekungan lokal terumbu belalang.

KESIMPULAN

- Terdapat perbedaan nyata pada komponen batugamping yang terendapkan di lingkungan sayap terumbu (smf 5) dan cekungan lokal terumbu belakang (smf 10). Perkembangan yang terjadi dari lingkungan sayap terumbu ke lingkungan cekungan lokal terumbu belakang antara lain penurunan jumlah butiran karbonat, peningkatan jumlah butiran terigen, dan peningkatan jumlah material neomorfisme. Pada komponen matriks, semen, dan keporian batuan tidak terjadi perubahan yang berarti.
- Butiran karbonat inti terumbu yang bercampur dengan fosil bentonik merupakan komponen yang menguasai batuan di lingkungan sayap terumbu, sebaliknya pengaruh fragmentasi dan pencucian butiran karbonat telah terjadi dengan baik di lingkungan cekungan lokal terumbu belakang yang menyebabkan butiran karbonat menjadi kepingan dan berkurang jumlahnya.
- Butiran terigen seperti kuarsa, felspar, dan kepingan batuan beku terbawa dari tinggian melewati saluran bawah laut menuju ke cekungan lokal terumbu belakang.
Hadirnya sejumlah besar butiran karbonat pada batugamping yang terendapkan di lingkungan sayap terumbu menjadi perisai proses neomorfisme, sehingga material hasil proses neomorfisme kurang berkembang.

UCAPAN TERIMA KASIH

Pada Kesempatan ini penulis mengucapkan terima kasih yang sebesar-besarnya kepada Prof. Dr. Ir. H.R. Febri Hirnawan, atas masukan tentang aspek metode penelitian yang sangat baik, dan kepada Dr. Hermes Panggabean, M.Sc. atas masukan tentang teknis sedimentologi batugamping demi peningkatan mutu tulisan ini.

ACUAN

Adams A.E. and MacKenzie, W.S., 1998. A Color Atlas of Carbonate Sediments and Rocks Under the Microscope. New York, Toronto: John Wiley \& Sons : 180 pp.
Bathurst, R.G.C., 1975. Carbonate Sediments and Their Diagenesis, Second Enlarged Edition. New York, Amsterdam, Oxford: Elsevier Scientific Publishing Company : 658 pp.
Dunham, R.J., 1962. Classification of Carbonate Rocks According to Depositional Textures. In Ham, W.E. (ed). Classification of Carbonate Rocks. The American Association of Petroleum Geologists Memoir 1:108-121.

Flugel, E., 1982. Microfacies Analysis of Limestones. Berlin, Heidelberg, New York: Springer-Verlag: 633 pp.
Gafoer, S., Amin, T.C., dan Pardede, R., 1993. Peta Geologi Lembar Baturaja, Sumatera, Skala 1:250.000. Pusat Penelitian dan Pengembangan Geologi, Bandung.
Gregg, J.M., 2005. Photographic Gallery of Carbonate Petrology. Via < http://web.umr.edu/~greggjay/ Carbonate_Page/photogal.html > (27/2/2006).
James, N.P., 1991. Diagenesis of Carbonate Sediments, Notes to Accompany a Short Course. Geological Society of Australia :101 pp.
Kendall C.G.St.C., 2005. Carbonate Petrology. In Kendall C.G.St.C. and Alnaji, N.S. (developers). USC Sequence Stratigraphy Web. Via < http://strata.geol.sc.edu/seqstrat.html > (27/02/2006).
Longman, M.W., 1980. Carbonate Diagenetic Textures from Nearsurface Diagenetic Environments. American Association of Petroleum Geologists Bulletin 64:461-487.
Maryanto, S., 2007a. Keterkaitan Hubungan Antar Variabel Mikrofasies Batugamping Bioklastika dari Formasi Baturaja di daerah Sekitar Muaradua, Sumatera Selatan. Tesis S2 Program Pascasarjana Universitas Padjadjaran, Bandung (tidak diterbitkan).
Maryanto, S., 2007b. Petrografi dan Proses Diagenesis Batugamping Formasi Baturaja di Lintasan Air Saka, OKU Selatan, Sumatera Selatan. Jurnal Sumber Daya Geologi 17(1):13-31.
Railsback, L.B., 2002. An Atlas of Pressure Dissolution Features. Via < http://www.gly.uga.edu/ railsback/PDFindex1.html > (20/02/2006).
Read, J.F., 1985. Carbonate Platform Facies Models. The American Association of Petroleum Geologists Bulletin 69:1-21.
Scholle, P.A., 1978. A Color Illustrated Guide to Carbonate Rock Constituents, Textures, Cements, and Porosities, American Association of Petroleum Geologists Memoir 27 : 241 pp.
Tucker, M.E. and Wright, V.P., 1990. Carbonate Sedimentology. Blackwell Scientific Publications Oxford, London, Edinburg, Cambridge : 482 pp .
Ulmer-Scholle and Mosley, 2000. Sedimentary Petrography, Geology 424/524. Via < http://www.ees.nmt.edu/ Geol/classes/geol524/homepage.html > (20/02/2006).
Waite, L.E., 2002. Carbonate Depositional Systems. In Earth System Science. Via < http://www.geocomplexity.com/Earth_systems.html > (06/03/2006).
Wilson, J.L. 1975. Carbonate Facies in Geologic History. Springer-Verlag New York, Heidelberg, Berlin : 471 pp.

Naskah diterima : 10 September 2007
Revisi terakhir : 19 Maret 2008

[^0]: Keterangan nama batuan:
 $M=$ Mudstone
 $B W=$ Bioclastic wackestone
 CBM $=$ Clayey bioclastic mudstone
 CBW $=$ Clayey bioclastic wackestone
 $B P=$ Bioclastic packstone
 $\begin{array}{lll}\text { SBP }=\text { Sandy bioclastic packstone } & B W / F=\text { Bioclastic wackestone } / \text { floatstone } \\ \text { CBP }=\text { Clayey bioclastic packstone } & B P / F=\text { Bioclastic packstone } / \text { floatstone } \\ \text { G/BG } & =\text { Grainstone } & B P / R=\text { Bioclastic packstone } / \text { rudstone } \\ \text { SBG } & =\text { Sandy bioclastic grainstone } & B / B i=\text { Boundstone } / \text { bindstone } \\ G / R & =\text { Grainstone } / \text { rudstone } & \end{array}$

