# MODEL GEOLOGI BAWAH PERMUKAAN DAERAH MUARAWAHAU HASIL ANALISIS ANOMALI GAYA BERAT BERDASARKAN ESTIMASI KEDALAMAN DENGAN METODE ANALISIS SPEKTRAL 

B. Setyanta, I. Setiadi dan W.H. Simamora<br>Pusat Survei Geologi<br>J. Diponegoro No. 57 Bandung 40122


#### Abstract

SARI Studi mengenai estimasi kedalaman pada model gaya berat Lembar Muarawahau, Kalimantan Timur dengan metode analisis spektral sangat membantu dalam mengurangi ambiguitas yang sering muncul dalam setiap kali pemodelan. Analisis kualitatif menunjukkan bahwa anomali tinggi terdapat di sebelah timur daerah penelitian dengan nilai berkisar antara 10 sampai 55 mgal, sedangkan anomali rendah dengan nilai antara - 60 sampai 9 mgal menempati bagian barat daerah penelitian. Dua kelompok anomali di daerah ini merefleksikan adanya cekungan dan tinggian anomali yang dipisahkan oleh sesar mendatar. Hasil pemodelan arah barat-timur yang didukung oleh metode analisis menunjukkan bahwa cekungan yang tersusun oleh batuan PraTersier dengan rapat massa sekitar $2.6 \mathrm{gr} / \mathrm{cc}$ mempunyai ketebalan sekitar 5 km dan mengalami deformasi oleh tektonik. Tinggian anomali pada blok timur merupakan pencerminan batuan ultramafik dan bancuh dengan rapat massa sekitar $2,65 \mathrm{gr} / \mathrm{cc}$. Batu-batuan pada blok timur ini sebagian tertutup oleh sedimen vulkanik setebal sekitar 500 m dengan rapat massa sekitar $2,3 \mathrm{gr} / \mathrm{cc}$. Namun demikian, dari kisaran nilai anomali, kedua blok ini masih dilandasi oleh kerak yang sama, yakni kerak granitik kontinen, sedangkan keberadaan batuan ultramafiknya hanya merupakan bagian atau fragmen kerak samudra yang mengalami proses alih tempat.


Kata kunci : Anomali gaya berat, estimasi kedalaman, model geologi


#### Abstract

A Study about a depth estimation on a gravity model in Muarawahau quadrangle, East Kalimantan, by using a Spectral Analysis method is very helpful to reduce ambiguity that appears in each modeling. The qualitative analysis shows that high anomalies lay at the eastern part of the research area with values between $10-55 \mathrm{mgal}$, while low gravity anomalies between -60 to 9 mgal lay at the western area. Two groups of anomaly in this area reflect a basin and basement high which is separated by a regional strike slip fault. A Model resulted from East to West profiling and supported by a Spectral Analyses Method shows that the basin is constructed by PreTertiary rocks with density of about $2.6 \mathrm{gr} / \mathrm{cc}$ and thickness approximately 5 km , experiencing tectonic deformation. The eastern high anomaly block is the reflection of ultramafik rocks and mélange with the density of about 2.65 grloc. Rocks in this block is partly covered by volcanic sediments abaut 500 meter thich ( $2.3 \mathrm{gr} / \mathrm{cc}$ ). However based on the values of anomaly, those two blocks are still underlined by the same granitic continent, meanwhile the existing ultramafic rocks are only ophiolite fragmen of oceanic crust.


Keywords : Gravity anomaly, depth estimation, geological model.

## PENDAHULUAN

Metode gaya berat merupakan salah satu metode geofisika yang telah banyak dipakai untuk mengetahui struktur geologi bawah permukaan bumi. Namun demikian, model geologi bawah permukaan yang dihasilkan bersifat non-unique, artinya dari satu penampang gaya berat dapat dihasilkan beberapa model geologi bawah permukaan, sehingga ambiguitasnya tinggi. Keadaan yang demikian banyak terjadi pada pembuatan model di daerah-daerah yang tidak mempunyai constrain sebagai pengendali pemodelan yang
berupa data pemboran maupun data seismik seperti di daerah Muarawahau, Kalimantan. Pada penampang gaya berat dengan titik-titik ukur yang relatif lurus, dapat digunakan metode koreksi rapat massa (Nettleton, 1976). Namun demikian untuk penampang yang melewati titik-titik hasil interpolasi (kontur) cara ini tidak dapat digunakan karena ketinggiannya tidak akurat. Untuk mengatasi hal itu, dilakukan metode spectral analysis dengan menggunakan transformasi sinyal gelombang. Namun demikian estimasi besaran nilai rapat massa dalam pemodelan juga harus cermat.

Transformasi sinyal merupakan suatu metode analisis gelombang yang sangat berguna dalam berbagai aplikasi ilmu. Transformasi merupakan cara pandang yang lain untuk satu kejadian yang sama. Transformasi memandang suatu frekuensi dalam satu domain (ruang/waktu) ke domain lain (bilangan gelombang/frekuensi). Karena merupakan suatu pandangan lain maka informasi yang dimuat fungsi dalam domain baru adalah persis sama dengan informasi yang dimuat dalam domain sebelumnya.

Prinsip transformasi sinyal atau transformasi data adalah menguraikan suatu bentuk gelombang sembarang menjadi gelombang sinusoidal dengan frekuensi bervariasi. Hasil penjumlahan gelombang sinusoidal dengan variasi frekuensi tersebut dapat membentuk kembali gelombang asal (Bringham,1988). Untuk kepentingan analisis anomali gaya berat yang nilainya dipengaruhi oleh jarak obyek terhadap alat ukur ( $f(x)$ ), amplitudo gelombang yang teruraikan tersebut ditampilkan sebagai fungsi dari bilangan gelombang $\mathrm{F}(\mathrm{k})$.
Selain itu juga dilakukan perhitungan estimasi ketebalan sebelum melakukan pemodelan geologi bawah permukaan, karena dengan adanya perkiraan ketebalan benda anomali akan sangat membantu mengurangi ambiguitas yang muncul dari model yang akan dibuat.

## TEKTONIK REGIONAL KALIMANTAN

Secara regional, tataan tektonik dan fisiografi Indonesia saat ini merupakan produk perkembangan tektonik dari kinematika tiga lempeng utama bumi yang berinteraksi di wilayah ini. Ketiga lempeng litosfera tersebut adalah Lempeng Eurasia, Lempeng IndoAustralia dan bagian barat Lempeng Samudera Pasifik. Selanjutnya, interaksi ketiga lempeng tersebut menghasilkan wilayah-wilayah regangan dan mampatan regional (van de Weerd \& Armin, 1992, McCaffrey, 1996) yang berhubungan dengan pembentukan cekungancekungan.

Dalam pembagian unsur-unsur tektonik Kalimantan, daerah penelitian termasuk wilayah cekungan Pratersier dan bagian atas Cekungan Kutai atau Cekungan Wahau (Tanean, drr., 1996, Gambar 1).

Menurut Supriatna \& Abidin (1995) kegiatan tektonik Kalimantan yang terekam di daerah Muarawahau dimulai sejak Mesozoikum dengan munculnya batubatuan mikrokontinen, batuan ofiolit dan batuan prisma akresi berumur Trias hingga Jura yang kemudian diikuti pengendapan sediment flysch Pra Tersier (Gambar 3). Batu-batuan tersebut di atas diyakini merupakan batuan dasar Pulau Kalimantan (Biantoro, et al., 1992, Moss, et al., 1998, McClay, et al., 2000), yang terintrusi oleh pluton granit pada zaman Kapur Akhir. Hingga kini pembentukan batuan sedimen flysch dan hubungannya dengan kelompok batuan baji akrasi masih menjadi perdebatan panjang (Baharuddin \& Wahyudiono, 2007).

Pada periode Miosen Tengah terjadi proses inversi pada cekungan-cekungan di Kalimantan akibat konvergensi antara Mikrokontinen Banggai-Sula dan Sulawesi bagian Timur yang ikut mendesak Pulau Kalimantan. Keadaan yang demikian berlangsung terus hingga Pliosen-Plistosen karena pengaruh kontraksi regional akibat konvergensi antara Lempeng Indo-Australia dan Busur Banda.


Gambar 1. Letak daerah penelitian terhadap unsur-unsur tektonik regional Kalimantan (modifikasi dari Tanean, drr., 1996 dan berbagai sumber).

## METODOLOGI

Data yang digunakan untuk analisis model geologi bawah permukaan daerah Muarawahau adalah data gaya berat dan data geologi sebagai pendukungnya. Metode yang digunakan untuk analisis data gaya berat yaitu metode Spektral Analisis. Metode ini di dasarkan pada analisis spektrum frekuensi, amplitudo dan bilangan gelombang yang diperoleh dari pemrosesan anomali Bouguer menggunakan Fast Transform (FFT). Parameter-parameter spektrum tersebut kemudian diolah dan dianalisis sehingga dapat diperoleh estimasi ketebalan benda anomali yang ada di bawah pemukaan, yang selanjutnya dengan tambahan data geologi dibuat model geologi bawah permukaan. Untuk lebih jelas urut-urutannya dapat dilihat pada diagram alir (Gambar 2).

## Metode Transformasi dalam Gaya Berat

Prinsip transformasi sinyal adalah menguraikan suatu bentuk gelombang sembarang menjadi gelombang sinusoidal dengan frekuensi bervariasi. Hasil penjumlahan gelombang sinusoidal dengan variasi frekuensi dapat membentuk kembali gelombang asal (Bringham, 1988). Untuk analisis anomali gaya berat, amplitudo gelombang sinusoidal yang teruraikan ditampilkan sebagai fungsi bilangan gelombang $\mathrm{f}(\mathrm{k})$. Dalam aplikasinya di lapangan dilakukan pengukuran terhadap besaran-besaran fisis di mana data yang diamati adalah yang diskret dan berhingga. Transformasi data seperti ini dikenal sebagai Transformasi Diskret (DFT). Transformasi semacam ini merupakan sampel dari sinyal komplek yang mewakili suatu sampling domain frekuensi transformasi. Transformasi sembarang fungsi real f (t) yang ditulis dengan $\mathrm{DF}(\mathrm{t})$ dapat dipandang sebagai deretan impuls :

$$
\begin{align*}
& F_{u}=f(n, \Delta X)  \tag{7}\\
& \Delta X=\text { Jarak sampel }
\end{align*}
$$

Transformasi sinyal yang disampling adalah

$$
\begin{aligned}
& D f(t)=f(t) \sum_{n--\infty}^{\infty} \delta(t-n . \Delta X) \\
& D f(t)=\sum_{n--x}^{\infty} f n \delta(t-n \Delta X)
\end{aligned}
$$



Gambar 2. Diagram alur pemodelan gayaberat dan geologi bawah permukaan daerah Muarawahau, Kalimantan.

Dan diskret pada fungsi wadalah:

$$
\begin{align*}
& D F(\omega)=\int_{-\infty}^{n} D f(t) e^{-i \omega t} d t \\
& D F(\omega)=\int_{-\omega}^{\infty} \sum_{=-\infty}^{\infty} f(t) \delta(t-n \Delta X) e^{-i \omega \prime} d t  \tag{9}\\
& D F(\omega)=\sum^{\infty} f r e^{-i n \Delta s}
\end{align*}
$$

Jika sampel dimulai dari $\mathfrak{t = 0}$ maka persamaan (9) menjadi

$$
\begin{equation*}
D F(w)=\sum_{w=0}^{s-1} f i n e^{-w n a x} \tag{10}
\end{equation*}
$$

Karena $\quad \omega=\frac{2 \pi n}{N \cdot \Delta X}$
maka persamaan (10) menjadi :
$D f n=\sum_{m-0}^{n-1} D f n e^{-i 2 \text { rem }: ~: ~}$
Untuk medan gaya berat dapat kita tuliskan menjadi :

$$
\begin{equation*}
G(k)=G\left[\frac{2 \pi n}{N \cdot \Delta X}\right]=\sum_{m=0}^{n-1} G(n) e^{-2 \pi m n: N} \tag{11}
\end{equation*}
$$

Dimana:

$$
\begin{aligned}
\mathrm{N} & =\text { Jumlah data } \\
\Delta X & =\text { Interval jarak } \\
\mathrm{n} & =0,1,2, \ldots \ldots .,(\mathrm{I}-1)
\end{aligned}
$$

Pada Transformasi Diskret $\boldsymbol{k}=2 \pi / \Delta x$, dan disebut bilangan gelombang sampling. Setengah bilangan gelombang sampling disebut bilangan gelombang Nyquist karena sifat transformasi yang berulang setiap $2 \pi / \Delta \boldsymbol{k}$ dengan sendirinya. Bilangan gelombang Nyquist adalah bilangan gelombang terbesar pada sumbu horizontal hasil transformasi. Nyquist mempunyai panjang gelombang dua kali interval sampel.

## Estimasi Lebar Window

Transformasi dua dimensi untuk $1 / \mathrm{r}$ dituliskan sebagai:

$$
\begin{equation*}
\Gamma\left(\frac{1}{r}\right)-\int_{-x-x}^{x} \frac{1}{\sqrt{x^{2}+y^{2}+\left(z_{0}-z\right)^{2}}} e^{-(t-x+2, y)} d x d y \tag{12}
\end{equation*}
$$

Persamaan di atas dapat disederhanakan dengan mengasumsikan fungsi $1 / r$ adalah simetris silinder terhadap sumbu z dengan mengkonversikan integral ke dalam koordinat polar, jika dituliskan :
$x=a \cos \theta, \quad y=a \sin \theta, \quad k=k \cos \phi, \quad k_{y}=k \sin \phi$
$a=\sqrt{x^{3}+y^{3}} \quad k=\sqrt{k_{x}^{2}+k^{2} y} \vdots \quad w=z_{0}-z^{\prime}$
maka tansformasi dua dimensi untuk 1/r menjadi:

$$
\begin{align*}
& F\left(\frac{1}{r}\right)=\int_{i=}^{2 \pi} \frac{1}{\sqrt{a^{2}+w^{2}}} e^{-i z e \alpha x(1-\phi)} a d a d 0 \\
& F\left(\frac{1}{r}\right)-\int_{0}^{\infty} \frac{1}{\sqrt{ } a^{2}+w^{2}}\left[\int_{0}^{2 \pi} e^{-i k^{2} \cos \hat{0} 0} d 0\right] a d a \tag{13}
\end{align*}
$$

Bentuk integral $\left[\int_{0}^{2 r} e^{-i a s c o s i l} d^{\prime} \theta\right]$ jika diselesaikan dalam bentuk fungsi Bessel orde ke nol menjadi :

$$
J_{0}(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-\pi z \cos \theta} d 0
$$

Selanjutnya persamaan tersebut disubstitusikan ke dalam transformasi dan menghasilkan transformasi Hankel orde ke nol :
$F\binom{1}{r}=2 \pi \int_{0}^{\infty} \frac{1}{\sqrt{a^{2}+w^{2}}} J_{0}(a k) a d a$

Solusi persamaan transformasi dua dimensi untuk 1/r terutama dituliskan oleh Bracewel sebagai berikut :
$F\left(\frac{1}{r}\right)=2 \pi \frac{e^{\mid H\left(z, z^{\prime}\right)}}{|k|} ; \quad z^{\prime}>z_{11} ; \quad|k| \neq 0 \quad$ (Blakely, 1996)

Potensial gravitasi sebuah titik massa $\mu$ diberikan oleh $U=\gamma \mu / r$ Transformasi dari potensial gaya berat yang teramati pada bidang horizontal secara sederhana dituliskan sebagai :

$$
\begin{align*}
F(U) & =\gamma \mu F\left(\frac{1}{r}\right) \\
& =2 \pi \mu \frac{e^{:\left(z_{z}-z^{\prime}\right)}}{|k|}: z^{\prime}>z_{v} ; \quad|k| \neq 0 \tag{16}
\end{align*} \quad \text { (Blakely,1996) }
$$

Gerak vertikal gravitasi yang disebabkan suatu titik massa adalah vertical derivative potensial gaya berat yaitu:

$$
g_{z}=\lambda \mu \frac{\delta}{\delta z} \frac{1}{r}
$$

Jika diamati pada suatu medan horizontal, medan ini mempunyai transformasi sebagai berikut:

$$
\begin{equation*}
F(\underline{z})=\gamma \mu F\left(\frac{\partial}{\partial} \frac{1}{\partial} r\right)=\gamma \mu \frac{\partial}{\partial z} F\left(\frac{1}{r}\right) \tag{17}
\end{equation*}
$$

$$
\Gamma\left(g_{8}\right)=2 \pi \gamma \mu e^{\cdot\left(z_{0}-z^{\prime}\right)} ; \quad z^{\prime}>z_{0}
$$

Dalam kepentingan mencari lebar window yang optimal spectrum amplitudo yang dihasilkan transformasi tadi dilogaritmakan sehingga :

$$
\begin{align*}
& \ln \mid f\left(g_{2}\right)=\ln 2 \pi \gamma \mu e^{\mid f\left(z_{0}-z^{\prime}\right)}  \tag{18}\\
& \ln \left|F\left(g_{z}\right)=k\left(z_{0}-z^{\prime}\right)+\ln 2 \pi y\right|
\end{align*}
$$

Persamaan diatas dapat dianalogikan dengan persamaan garis lurus:

$$
\mathrm{y}=\mathrm{mtx}+\mathrm{nt}
$$

dengan

$$
\begin{aligned}
\ln \mid F\left(g_{\mathrm{D}}\right)= & \text { Sumbu y } \\
|k| & =\text { Sumbu x } \\
\left(z_{0}-z^{\prime}\right)= & \begin{array}{l}
\text { kemiringan garis } \\
\\
\\
(\mathrm{m}, \text { atau ketebalan })
\end{array}
\end{aligned}
$$

Dengan demikian $|k|$ sebagai sumbu $x$ didefinisikan sebagai bilangan gelombang sampling yang besarnya, $2 \pi / \lambda$ dengan $\lambda$ adalah panjang gelombang. Hubungan $\lambda$ dengan $\Delta x$ diperoleh dari
persamaan $k=2 \pi / \lambda=2 \pi / \Delta x$. Seharusnya dari persamaan tersebut nilai $\lambda$ sama dengan $\Delta x$, tentunya ada faktor lain pada $\Delta x$ yang disebut konstanta pengali, sehingga $\lambda=\mathrm{c} . \Delta x$. Konstanta c didefinisikan sebagai lebar window dan nilainya harus ganjil.

## Moving Average

Teknik ini pada dasarnya merupakan perata-rataan data anomali gaya berat yang ada. Hasil moving average merupakan harga anomali regional yang secara matematis dapat dituliskan :

$\mathrm{n}=$ lebar jendela $=(\mathrm{N}-1) / 2$
i $=$ Nomorstasiun
$\Delta \mathrm{g}=$ Anomali Bouguer di titik i
Sementara harga anomali residualnya diperoleh dengan mengurangkan nilai anomali total terhadap anomali regionalnya. Hasilnya kemudian digunakan pada pembuatan model geologi bawah permukaan. Pengaruh lokal (dangkal) dan pengaruh regional (dalam) sudah diketahui berdasarkan lebar window.

Salah satu kelemahan metode ini adalah dengan semakin besar windows yang digunakan, maka daerah yang dapat kita teliti akan semakin kecil. Hal ini terjadi karena data yang berada di tepi daerah penelitian akan hilang. Oleh karena itu pemilihan window harus dilakukan seoptimal mungkin. Salah satu cara mengestimasi lebar window adalah dengan menggunakan transformasi.

## HASIL DAN PEMBAHASAN

## Anomali Bouguer Hubungannya dengan Geologi daerah Muarawahau

Peta Anomali Bouguer Lembar Muarawahau, Kalimantan, dibuat berdasarkan pengukuran titiktitik di daerah Muarawahau dan sekitarnya dengan menggunakan helikopter sebagai sarana transportasi, sehingga penyebarannya cukup memadai.

Pemetaan dilakukan dengan menggunakan alat ukur gravimeter geodetik G525 dan G826, sedangkan ketinggian dan posisi titik pengamatan diukur dengan GPS geodetik Leica GX-1220.

Peta anomali Bouguer daerah Muarawahau, Kalimantan Timur, telah diterbitkan oleh Pusat Survei Geologi (Sobari drr., 2005) dan dapat dilihat pada Gambar 4. Dari gambar tersebut terlihat bahwa di daerah penelitian terdapat dua kelompok anomali Bouguer. Kelompok anomali relatif tinggi terdapat pada bagian timur dengan rentang nilai berkisar antara 10 sampai 55 mgal, sedangkan anomali rendah dengan nilai antara -60 sampai 9 mgal menempati bagian barat daerah penelitian. Dua kelompok anomali di daerah ini yang merefleksikan adanya cekungan dan punggungan yang dipisahkan oleh ketidaksinambungan suatu bongkahan (block discontinuity) yang berarah relatif barat daya-timur laut.

Daerah rendahan anomali di bagian barat kemungkinan disebabkan oleh refleksi batuan sedimen Pratersier yang cukup tebal di daerah ini yang menutupi sebagian besar lembar ini dan lembar-lembar di sekitarnya (Supriatna \& Abidin, 1995). Sementara daerah tinggian anomali di bagian timur kemungkinan merupakan refleksi dari masa padat yang dekat dengan permukaan. Masa padat ini kemungkinan besar adalah batu-batuan bancuh Formasi Kelinjau, batu-batuan ultrabasa dan gabro (Supriatna \& Abidin, 1995, lihat juga Gambar 2). Block discontinuity yang memisahkan daerah tinggian dan rendahan anomali di daerah ini kemungkinan adalah sesar regional dengan arah hampir barat daya-timur laut, tempat batuan dasar hingga batuan di permukaan tersesarkan. Hal ini terlihat dari peta anomali sisa maupun regional (Gambar 5 dan 6) yang memperlihatkan batas tinggian dan rendahan anomali pada kedua peta tersebut masih relatif sama. Arah sesar pada peta anomali gaya berat ini hampir sama dengan arah umum struktur geologi yang dibuat oleh Supriatna \& Abidin (1995), Tanean drr. (1996) dan busur magmatik dalam Neogen Triple Junction Extentional Tectonic yang dikemukakan oleh Simanjuntak (1999).


Gambar 3. Peta Geologi Daerah Muarawahau dan sekitarnya, Kalimantan (disederhanakan dari Supriatna \& Abidin, 1995).

## Moving Average dan Estimasi Lebar Window

Kontur Anomali Bouguer sebenarnya merupakan gabungan antara komponen regional dan komponen residual (Clarke, 1969). Untuk memisahkan antara kedua komponen anomali tersebut dapat dilakukan dengan beberapa cara diantaranya adalah dengan Polinomial surface fitting dan dengan cara moving average. Komponen residual dan regional hasil teknik polynomial dapat dilihat berturut-turut pada Gambar 5 dan 6.

Pada komponen residual (Gambar 5) terlihat bahwa anomali tinggi terdapat pada bagian tengah selatan yang mencerminkan adanya batuan dengan rapat massa tinggi dan menembus sampai ke permukaan. Efek komponen residual ini mencerminkan batuan penyusun yang relatif berada pada bagian atas atau dekat permukaan. Kemungkinan adalah batuan sedimen Tersier dan vulkanik Tersier, bancuh Formasi Telen-Kelinjau, dan batuan ultrabasa (Supriatna \& Abidin, 1995). Sementara untuk komponen
regionalnya seperti terlihat pada Gambar 6 mencerminkan batuan yang berada relatif jauh di bawah permukaan bumi. Di samping batuan dasar granitik, ternyata batuan sedimen Pratersier, bancuh dan ultramafik berpengaruh cukup dalam (tebal), sehingga masih tercermin pada peta anomali regionalnya (lihat juga model gaya berat Gambar 11).

Dari hasil kontur anomali Bouguer tersebut kemudian dibuat penampang melintang AB yang memotong arah umum garis-garis kontur atau tegak lurus terhadap arah umum struktur geologi (lihat Gambar 4 dan Gambar 11).

Dari profil anomali ini kemudian dianalisis spektrum amplitudonya seperti terlihat pada Gambar 7. Dari gambar tersebut terlihat bahwa frekuensi rendah (yang mewakili komponen regional) memiliki amplitudo yang relatif tinggi, sedangkan frekuensi tinggi memiliki amplitudo yang relatif rendah mewakili komponen residual.

Pemisahan komponen regional dan residual juga dilakukan dengan proses moving average. Hasil moving average merupakan efek komponen residual. Untuk memperoleh komponen regionalnya, dilakukan pengurangan antara anomali bouguer dengan komponen residual hasil moving average tersebut. Pada proses moving average ini perlu dilakukan pemilihan lebar window yang optimal. Untuk itu dicoba dengan mengambil dua pemilihan lebar window agar dapat sebagai pembanding. Pertama adalah moving average dengan menggunakan lebar window 7 seperti terlihat pada Gambar 8. Dari gambar terlihat bahwa walaupun anomali tidak smooth, tapi data tidak ada yang terbuang, jadi hasil moving average pada lebar window 7 dapat dipakai sebagai acuan pemodelan karena mewakili semua komponen penampang. Hasil moving average untuk lebar window 21 dapat dilihat pada Gambar 9, dari gambar terlihat bahwa anomali lebih smooth tetapi terlihat bânyak data yang terbuang sehingga tidak mewakili semua komponen penampang.

Untuk estimasi ketebalan dibuat grafik antara terhadap Ln (A). k adalah bilangan gelombang sampling $(2 \pi / \lambda)$ dan $\operatorname{Ln}(\mathrm{A})$ adalah amlitudo. Pada grafik tersebut akan terlihat bahwa pengaruh komponen regional ditunjukkan oleh gradien/s/ope yang lebih curam sedangkan komponen residualnya ditunjukkan oleh slope yang landai. Dari estimasi ketebalan pada lebar window 7 terlihat bahwa efek regionalnya berasal dari ketebalan lapisan sekitar $4,26 \mathrm{~km}$, sedangkan efek residualnya berasal dari ketebalan lapisan sekitar $0,51 \mathrm{~km}$ (Gambar 10).

Hasil estimasi ketebalan dengan menggunakan analisis spektral ini dapat dilihat pada model gaya berat (Gambar 11). Meskipun demikian, dalam pembuatan model geologi bawah permukaan, pemilihan harga rata-rata rapat massa tiap-tiap poligon yang tepat dan pemahaman kondisi geologi setempat juga mempengaruhi kelayakan model yang dihasilkan.

## Model gaya berat hubungannya dengan penampang geologi berdasarkan estimasi ketebalan dan moving average

Model gaya berat arah AB (Gambar 11) dibuat dengan memasukkan poligon-poligon berdasarkan nilai rapat massa rata-rata tiap kelompok batuan dan membuat interpolasi grafik kontur anomali hingga
grafik hasil perhitungan komputer ini berhimpit dengan grafik hasil pengukuran di lapangan. Dari beberapa perhitungan menggunakan program komputer dengan memasukkan nilai rapat massa rata-rata tiap poligon yang sesuai dengan jenis batuannya, maka diperoleh 6 poligon. Keenam poligon tersebut mewakili batuan sedimen Tersier, batuan sedimen Pratersier, Bancuh, Batuan Ultramafik, dan batuan terobosan andesit serta granit. Sebagai pedoman untuk pembuatan model, digunakan hasil estimasi ketebalan dengan spektral analisis yang menghasilkan ketebalan lapisan batuan yang mempengaruhi anomali lokal adalah sekitar 0.51 km dan sekitar $4,26 \mathrm{~km}$ untuk lapisan dalam yang mempengaruhi anomali regional (Gambar 10).

Dua kelompok anomali yang telah disebutkan di atas (pada bab Anomali Bouguer Hubungannya dengan Geologi daerah Muarawahau) pada model gaya berat dipisahkan oleh block discontinuity yang kemungkinan adalah sesar. Hal ini sesuai dengan pendapat Supriatna dan Abidin (1995) bahwa di daerah Muarawahau terdapat zona sesar dengan arah utara timur laut-selatan barat daya (Gambar 3). Sesar ini memisahkan kelompok batuan yang membentuk lembah anomali pada grafik anomali (di sebelah barat sesar) dan tinggian anomali (di sebelah timur sesar). Grafik lembah anomali merupakan refleksi cekungan batuan yang cukup tebal dengan rata-rata rapatmasa penyusunnya sekitar $2,6 \mathrm{gr} / \mathrm{cc}$ dan batuan vulkanik Tersier dengan rapat massa rata-rata sekitar $2,25 \mathrm{gr} / \mathrm{cc}$. Sedangkan tinggian anomali di sebelah timur adalah refleksi dari kelompok batuan yang terdiri atas batuan ultramafik ( $2,7 \mathrm{gr} / \mathrm{cc}$ ), batuan bancuh ( $2,6 \mathrm{gr} / \mathrm{cc}$ ), intrusi andesit/diorit ( $2,8 \mathrm{gr} / \mathrm{cc}$ ) yang kemungkinan menerobos melalui zona sesar di bawahnya. Namun demikian, kedua kelompok anomali ini masih dilandasi oleh kerak batuan yang sama, yaitu kerak granitik kontinen ( $2,68 \mathrm{gr} / \mathrm{cc}$ ). Hal ini tercermin dari grafik nilai anomali maksimumnya yang hanya mencapai 55 mgal (belum mencapai nilai untuk kerak basaltik). Dengan demikian adanya batuan ultramafik di sini adalah fragmen-fragmen kerak samudra yang kemungkinan mengalami proses alih tempat oleh tektonik bersamaan dengan terbentuknya bancuh Kelinjau.

Geo-Sciences


Gambar 4. Kontur anomali Bouguer daerah Muarawahau dan sekilarnya, interval $2,5 \mathrm{mgal}$ (Sobari, dkk, 2005). AB adalah arah pemodelan gaya berat.


Gambar 5. Kontur anomali sisa daerah Muarawahau dan sekitarnya, interval 2 mgal.


Gambar 6. Kontur anomali regional daerah Muarawahau dan sekitarnya, interval 5 mgal, AB adalah arah pemodelan gayaberat Bouguer.


Gamba 7. Spektrum amplitudo penampang gaya berat arah $A B$ daerah Muarawahau. Amplitudo rendah (di bagian kanan) merupakan pengaruh batuan dangkal, sedangkan amplitudo tinggi (di bagian kiri) merupakan pengaruh batuan dalam (regional).


Gambar 8. Moving Average pada jendela 7 penampang AB, daerah Muarawahau, Kalimantan, adalah pemilihan lebar jendela yang paling baik.

## Geo-Sciences



Gambar 9. Moving Average pada jendela 21 penampang AB, daerah Muarawahau, Kalimantan. Meskipun lebih smoot tapi banyak data yang terbuang. Ini adalah contoh yang kurang baik dalam pemilihanlebar jendela.


Gambar 10. Estimasi ketebalan rata-rata batuan yang berpengaruh terhadap anomali regional dan ketebalan rata-rata batuan yang berpengaruh terhadap anomali lokal pada jendela moving average 7 menurut persamaan Blakely (1996). Lihat persamaan 18 pada bab Estimasi Lebar Window

$$
\begin{aligned}
& \ln \mid F\left(g_{i}\right)=\ln 2 \pi \gamma u e^{k t\left(\xi_{s} z^{\prime}\right)} \\
& \ln \left|F\left(g_{.}\right)-|x|\left(z_{0}-z^{\prime}\right)+\ln 2 \pi \gamma \mu\right.
\end{aligned}
$$

$z_{0}-z^{\prime}=$ ketebalan lapisan yaitu 4,2662 dan 0.514.1

## KESIMPULAN

- Pemisahan pengaruh komponen regional dan lokal data gaya berat dapat dilakukan dengan beberapa cara, diantaranya spectral analisis, polynomial dan moving average.

■ Studi mengenai estimasi ketebalan penting dilakukan sebagai pijakan/pengendali di samping perkiraan rapat massa batuan untuk interpretasi model yang akan dibuat terutama untuk daerah-daerah yang belum ada data pendukung seperti seismik, bor dII.

- Pengaruh komponen anomali residual di daerah Muarawahau adalah lapisan dengan ketebalan sekitar 0,51km sedangkan pengaruh komponen regional adalah lapisan dengan ketebalan sekitar 4,2 km.

■ Batuan sedimen PraTersier dan batuan ultramafik di daerah ini tersingkap dan mempunyai ketebalan cukup besar sehingga tercermin pada peta anomali residual dan anomali regional.

■ Daerah Muarawahau dilandasi oleh kerak granitik sedangkan batuan ultramfik yang ada hanyalah fragmen-fragmen kerak samudra yang mengalami alih tempat, walaupun tercermin pada peta anomali regional.

## UCAPAN TERIMA KASIH

Dengan selesainya penulisan makalah ini, maka penulis mengucapkan terima-kasih yang sebesarbesarnya kepada Kepala Pusat Survei Geologi atas ijin penerbitan makalah ini, Kordinator Program P2D dan para editor atas koreksi dan saran-saran yang telah diberikan dalam memperbaiki makalah ini.

## ACUAN

Baharuddin dan Wahyudiono, J., 2007. Kontrol Struktur pada pola zig-zag aliran Sungai Kayan di daerah Peso, Kalimantan Timur, Jurnal Sumber Daya Geologi, XVII (3) :178-186. Pusat Survei Geologi

Biantoro, E, Muritno, B.P. and Mamuaya, J.M.B., 1992, Inversion faults as the major structural control in the northern part of the Kutai Basin, East Kalimantan, IPA Proceeding 21st Annual Convention, Jakarta, p 45-68.

Blakely, R. J.,1996, Potential theory in gravity and magnetic applications, Cambidge University press, USA.
Bringham, E. O., 1988, The fast fourier transform and its applications, Prentice-Hall International Inc.
Clarke, G.K. C., 1969, Optimum second derivative and downward continuation filters, Geophysics, 34: 424437

Coons, et al., 1963, Least square polynomial fitting of gravity data and case histories, 3rd annual conf. on Computers in Mineral Industries Proc., part 2, p. 498-519.

McCaffrey, R., 1996, Slip partitioning at convergent plate boundaries of SE Asia, In : Hall, R. and Blundel, D.J. (eds), Tectonic Evolution of South Asia, Geological Geological Society of London Special Publication.(106): 3-18.

McClay, K., Dooley, T., Ferguson, A and Poblet, J., 2000, Tectonic Evolution of the Sanga-sanga Block, Mahakam Delta, Kalimantan, Indonesia, AAPG Bulettin, 64 (6) : 765-786.

Moss, S.J., Carter, A. Baker, S.dan Hurford, A.J., 1998, A Late Oligocene Tectono-volcanic event in East Kalimantan and the implications for tectonics and sedimentation in Borneo, http://www.find articles.com, 22 Desember 2005.

## Geo-Sciences

Nettleton, L.L., 1976, Gravity and Magnetics in oil prospecting, New York, McGraw-Hill Book Co., Inc., 464 p.
Simanjuntak, T.O., 1999, Neogene Dayak Orogeny in Kalimantan. In, Busono, I. \& Alam, H. (eds). Development in Indonesia Tectonics and Structural Geology. Proc. Indon. Ass. Geol. 1: 83-90.

Sobari, I, Rochandi, U., Setiadi, I dan Hayat, D.Z., 2005, Peta Anomali Bouguer Lembar Muarawahau, Kalimantan, skala 1:250.000, Pusat Survei Geologi.

Supriatna S.dan H.Z. Abidin, H.Z., 1995. Peta Geologi Lembar Muarawahau, Kalimantan, Pusat Penelitian dan Pengembangan Geologi, Bandung.

Tanean, H., Paterson, D.W. \& MacEndarto, 1996. Source Provenance Interpretation of Kutai Basin Sandstones and the Implications for Tectono-Stratigraphic Evolution of Kalimantan, Proceeding IPA, 25th Silver Anniversary Convention.

Van de Weerd A. and Armin, R.A., 1992, Origin and evaluation of the Tertiary hydrocarbon bearing basins in Kalimantan (Borneo), Indonesia, AAPG Bulletin, 76 (11) : 1778-1803.

```
Naskah diterima : 31 Maret 2008
Revisi terakhir : 28 Agustus 2008
```

