POTENSI PANAS BUMI DAERAH PANDEGLANG DAN SEKITARNYA BERDASARKAN EVALUASI DATA GEOLOGI DAN GEOFISIKA TERPADU

Subagio dan B.S. Widijono
Pusat Survei Geologi
JI. Diponegoro No. 57, Bandung - 40122

Abstract

SARI Informasi geologi dan geofisika terpadu memberikan gambaran sebaran geologi bawah permukaan daerah penelitian. Dari analisis pemodelan gaya berat daerah penelitian, didapatkan suatu gambaran tentang keberadaan beberapa struktur terban dan terobosan batuan intrusi. Struktur-struktur tersebut diperkirakan berfungsi sebagai cebakan dari potensi geotermal. Batuan intrusi muda di bawah Gunung Karang diinterpretasikan sumber panas, sementara batuan sedimen tersier kemungkinan berfungsi sebagai reservoir. Batuan gunung api teralterasi yang tersebar luas di daerah penelitian kemungkinan berfungsi sebagai batuan penutup. Kemungkinan potensi geotermal juga diindikasikan oleh keberadaan beberapa mata air panas yang tersingkap di daerah penelitian.

Kata kunci : informasi geofisika terpadu, strukuur geologi bawah permukaan, panas bumi

Abstract

Intergrated geological and geophysical informations provide ilustration of subsurface geology of the researched area. Result of gravity modelling of the study area show several grabbens and intrusives. This structures would probably be act as trap of a geothermal potential. The young intrusive rocks beneath the Gunung Karang is interpretated as a heat sources, while the Tertiary sedimentary rocks could possibly be a reservoir. The altered volcanic rocks widely exposed in the study area may presence as a caprock. The possibility of geothermal energy potential is also indicated by the occurrence of several of springs exposed in the area.

Keywords : intergrated geophysical information, subsurface geological structure, geothermal

PENDAHULUAN

Informasi spasial gaya berat dapat dipakai sebagai salah satu cara untuk memprediksi struktur geologi, baik di bawah maupun di permukaan, dan densitas batuan penyusun kerak bumi. Salah satu aplikasi praktisnya, informasi spasial gaya berat disajikan dalam bentuk data anomali gaya berat. Anomali ini menunjukkan perbedaan nilai gaya berat pengamatan dengan nilai gaya berat teoritis. Berdasarkan cara pereduksian gaya berat hasil ukuran, salah satunya anomali Bouguer. Untuk keperluan geofisik, khususnya untuk eksplorasi energi dan sumberdaya mineral, data anomali yang diperlukan adalah anomali Bouguer.
Pemetaan anomali Bouguer skala 1:100.000 telah dilakukan pada tahun 1996 dengan interval titik ukur sekitar 2-3 km, mencakup daerah Serang, Cilegon, Pandeglang, Rangkasbitung, dan sekitarnya. Dalam peta sistematik, daerah penelitian termasuk ke dalam Lembar Peta Serang yang dibuat Nasution, 1997. Pada tahun 2006, di daerah

Rangkasbitung juga dilakukan survei gaya berat dengan interval titik ukur sekitar 0,7-1 km, sehingga cekungan dangkal yang terbentuk di sekitar daerah tersebut dapat dídelineasi secara terperinci (Subagio, 2006). Di samiping data gaya berat, data geologi permukaan juga sudah cukup lengkap tersedia dalam bentuk peta geologi skala 1:100.000 (Rusmana, drr. 1991).

Pada tahun 1973 hingga 1984 PERTAMINA telah melakukan survei geofisika terpadu di daerah panas bumi (geothermal) Citaman, Banten, yang meliputi survei aero-magnetik, pemetaan geolistrik, survei magneto-telluric sounding, dan survei gaya berat terperinci (Sudarman, 1985):
Dengan tersedianya berbagai data di atas, maka dapat dilakukan penelitian ilmiah kebumian khususnya yang berhubungan dengan potensi geologi, baik mengenai prospek sumber daya mineral dan energi, maupun dalam hubungannya dengan kebencanaan. Maksud penelitian ini adalah untuk mempadu serasikan berbagai data geofisika dan data geologi yang tersedia di daerah penelitian, sehingga
dapat ditentukan keterkaitan data satu dengan data lainnya. Tujuannya adalah untuk menentukan struktur geologi bawah permukaan, dalam hubungannya dengan potensi geologi panas bumi.

Daerah penelitian terletak di daerah Serang, Cilegon, Pandeglang dan Rangkasbitung, Provinsi Banten. Berdasarkan sistem koordinat geodetis, lokasi tersebut terletak dalam selang koordinat : $106^{\circ} 00^{\prime}$ $106^{\circ} 30^{\prime \prime} \mathrm{BT}$ dan $06^{\circ} 00^{\prime}-06^{\circ} 30^{\prime}$ LS (Gambar 1).

TATAAN GEOLOGI

Fisiografi dan morfologi

Daerah penelitian dapat dikelompokkan ke dalam tiga satuan morfologi, yaitu dataran rendah, perbukitan bergelombang, dan kerucut gunung api (Rusmana drr, 1991).

Daerah dataran rendah menempati bagian utara lembar, memanjang dengan arah barat - timur. Di bagian selatan terdapat bukit-bukit kecil yang mempunyai ketinggian sampai 20 m , dan merupakan daerah aliran Sungai Ciujung, Sungai Cidurian, dan Sungai Cipayaeun. Perbukitan bergelombang terdapat di sebelah selatan dataran rendah, berupa deretan perbukitan yang tingginya berkisar dari $80-250 \mathrm{~m}$ dari permukaan laut. Penyaliran di daerah ini berpola hampir sejajar dan lembahnya berlereng agak terjal. Di beberapa tempat terdapat tonjolan yang mencolok berupa korok gunung api.

Kerucut gunung api menempati bagian barat dan barat laut lembar, yang terdiri atas Kelompok Gunung api Karang-Pulosari, dengan titik tertinggi 1778 m di atas permukaan laut. Gunung api ini berkembang sebagai kerucut yang tajam, dengan tekuk pada lereng terlihat jelas. Sungai di lereng bagian atas mempunyai kelandaian besar dengan lembah yang sempit, dan pola salirannya bersifat memancar. Kelompok Gunung Gede di bagian barat laut lembar, mempunyai bentuk kerucut yang tumpul karena
pengikisan yang terus berlanjut. Pola salirannya juga memancar, sungainya hanya berair di musim hujan.

Pada tubuh Gunung Karang-Pulosari terdapat sebuah kaldera, yang membentuk dasar sebagian tertutup rawa (rawa danau) dan sebagian ditutupi oleh hutan. Di sebelah barat laut Serang terdapat sebuah kubah lava yang berlereng landai dengan ketinggian sekitar 260 m di atas permukaan laut. Gunung Pinang termasuk ke dalam satuan ini.

Stratigrafi

Tataan stratigrafi di daerah penelitian terdiri atas batuan sedimen, gunung api, dan batuan terobosan, berumur mulai dari Miosen Akhir hingga Holosen (Rusmana drr., 1991).

Tebal setiap formasi berkisar sekitar 200-800 m, dengan tebal keseluruhan sekitar 3500 m . Formasi Bojongmanik (Tmb) merupakan satuan tertua yang berumur Miosen Akhir, terdiri atas perselingan antara batupasir dan batu lempung pasiran, batugamping, batupasir tufaan dan tuf pada bagian atas. Formasi ini ditindih tak selaras oleh Formasi Genteng yang terdiri atas tuf batuapung, batupasir tufan, konglomerat, dan breksi andesit yang diduga berumur Pliosen Awal. Formasi Cipacar (Tpc) yang terdiri atas tuf batuapung berselingan dengan lempung tufan, konglomerat, dan napal glaukonitan. Umurnya diperkirakan Pliosen Akhir. Formasi ini menindih Formasi Genteng secara tak selaras. Di atas Formasi Cipacar diendapkan secara tak selaras Formasi Bojong (Qpb) yang terdiri atas napal pasiran, lempung pasiran, batugamping kokina, dan tuf. Umurnya Plistosen

Batuan gunung api yang terdapat di daerah ini dapat dikelompokkan ke dalam batuan gunung api tua yang berasal dari Gunung Danau, Gunung Gede, dan kelompok batuan gunung api muda yang dihasilkan oleh Gunung Karang dan Gunung Pulosari. Umurnya mulai dari Plistosen Tua hingga Holosen.

Batuan terobosan yang terdapat di lokasi penelitian ini bersusunan andesit hingga basal. Diduga telah tiga kali terjadi penerobosan yaitu terobosan tertua terjadi di bagian selatan lembar, dan makin ke utara umur terobosan makin muda.
Endapan aluvium yang terdiri atas endapan sungai dan pantai (Qa) serta rawa (Qr) tersebar cukup luas di bagian utara lembar dan di daerah rawa danau (di bagian tengah lembar sebelah barat) (Gambar 2).

Gambar 2. Tataan geologi daerah Serang dan sekitarnya (Rusmana, 1991).

Struktur dan Tektonik

Pengaruh tektonik di daerah ini dicerminkan oleh adanya lipatan dan sesar. Kemiringan lapisan yang umumnya tidak melebihi 30° menunjukkan bahwa pengaruh ini tidak begitu besar. Sumbu lipatan pada umumnya berarah utara timur laut - selatan barat daya. Pada batuan tertua (Formasi Bojongmanik), poros lipatan berarah utara timur laut - selatan barat daya. Sesar dan kelurusan umumnya berarah barat laut-tenggara, yang merupakan sesar turun.

Pengaruh tektonik yang terjadi kemudian hanya dapat dikenali sebagai kelurusan pada foto udara, salah satu di antaranya ialah kelurusan berarah barat laut yang berakhir di Gunung Pinang.

Sumber Daya Energi

Mata air panas yang ditemukan di dekat Desa Cibeureum, dipergunakan untuk tempat pemandian, dan sudah diusahakan sebagai objek wisata pemandian air panas Batukawung. Adanya mata air panas ini menunjukkan adanya gejala panas bumi. Daerah Rawa Danau diduga sebagai sumber panas bumi.

METODOLOGI PENELITIAN

Metode gaya berat merupakan salah satu penelitian gerofisika yang didasarkan pada teori potensial. Metode ini banyak digunakan untuk mendelineasi sebaran densitas batuan penyusun kerak bumi dan struktur geologi bawah permukaan. Oleh karena itu, metode ini banyak digunakan untuk survei pendahuluan dalam eksplorasi potensi geologi, yang meliputi prospek sumber daya mineral dan energi, dan dalam hubungannya dengan kebencanaan geologi. Salah satu kelemahan metode ini adalah hasil penafsirannya mempunyai derajat ketidakpastian (ambiguous) yang cukup tinggi, sehingga diperlukan data lain yang mampu mengikat atau mengontrol hasil penafsirannya. Dalam penelitian ini, data pengikat yang digunakan adalah data geologi permukaan, dan data geofisika terpadu lainnya yang dihasilkan dari beberapa metode geofisika, yang terdiri atas survei aero-magnetik, pemetaan geolistrik, survei magneto-telluric sounding, dan survei gaya berat terperinci.

Pola Anomali Bouguer

Sebaran anomali Bouguer merefleksikan sebaran lateral variasi rapat massa batuan yang terdapat di daerah penelitian. Adanya gejala struktur geologi ditunjukkan oleh pengelompokan garis-garis kontur sejajar dengan jarak antara yang relatif rapat, sehingga membentuk kelurusan kontur yang dapat ditafsirkan sebagai kelurusan struktur geologi bawah permukaan.

Peta anomali Bouguer Lembar Serang, skala 1:100.000 yang disusun oleh Nasution dan Djarwadi (1997) menunjukkan pola anomali melingkar positif yang membentuk punggungan anomali, dan tersebar di bagian barat, selatan, dan bagian utara daerah penelitian. Pola anomali melingkar negatif membentuk anomali rendah, yang mencerminkan cekungan yang terpusat di bagian tengah daerah penelitian. Nilai anomali berkisar antara 53-90 mgal (Gambar 3).
Pola anomali melingkar positif bernilai sekitar 65-90 mgal yang terdapat di sebelah tenggara Rangkasbitung bersesuaian dengan keterdapatan batuan terobosan andesit yang berumur Tersier, sedangkan pola anomali melingkar positif dengan kisaran nilai sekitar 74-77 mgal di sebelah barat Serang bersesuaian dengan tempat tersingkapnya batuan terobosan Kuarter. Pola anomali positif yang dijumpai di bagian barat yaitu di sebelah selatan Gunung Karang, tidak ada kaitannya dengan batuan terobosan, sebab di daerah ini tidak tersingkap batuan terobosan. namun daerah tersebut tersusun oleh batuan gunung api Kuarter. Fenomena yang sama juga dijumpai di sebelah barat Serang dan di sebelah tenggara Rangkasbitung. Penampakan pola punggungan anomali tersebut diduga berhubungan dengan batuan terobosan. Pola melingkar negatif yang membentuk cekungan anomali dengan nilai sekitar 53-60 mgal terdapat di bagian tengah di sekitar Rangkasbitung. Pada anomali rendah ini terdapat singkapan batuan gunung api Kuarter yang tersusun oleh tuf, breksi batu apung, dan batupasir tufan. Pola anomali negatif ini yang mencerminkan suatu cekungan diduga diakibatkan oleh sesar, sehingga menyebabkan terjadinya suatu terban (graben). Anomali dengan nilai lebih kecil dari 53 mgal diduga merupakan refleksi batuan gunung api yang telah teralterasi (Gambar 3).

Geo-resources

Gambar 3. Pola anomali Bouguer Lembar Serang, Jawa (Nasution, 1990).

Penafsiran Data Geofisika Terpadu

Survei geofisika terpadu yang melibatkan berbagai metode seperti aero-magnetik, pemetaan geolistrik, survei magneto-telluric sounding, survei gaya berat, dan pengukuran gradien panas bumi telah dilakukan PERTAMINA di daerah lapangan panas bumi Citaman, Banten. Interpretasi data geofisika terpadu didasarkan data geooogi regional menghasilkan penafsiran tentang tubuh batuan intrusi, seperti yang tersaji pada Gambar 4, 5, dan 6.
Hasil penafsiran data geofisika terpadu dilakukan oleh Sudarman (1985). Hasil tersebut dapat dijadikan acuan untuk melakukan penafsiran pola anomali gaya berat daerah penelitian. Sebagai contoh, adanya anomali tinggi dengan pola kontur melingkar positif di daerah sebelah selatan Gunung Karang menunjukkan adanya terobosan batuan intrusi yang tidak tersingkap di permukaan.

Pola anomali melingkar positif juga dijumpai di bagian utara, tepatnya di sebelah utara Cilegon. Pola anomali positif tersebut dikontrol oleh keberadaan tubuh batuan intrusi Kuarter yang tersingkap di
permukaan, sedangkan pola anomali positif di bagian selatan, yaitu di sebelah tenggara Rangkasbitung, menunjukkan adanya singkapan batuan terobosan Tersier (Rusmana drr., 1991). Jadi anomali positif di daerah ini kemungkinan besar disebabkan oleh adanya batuan intrusi di permukaan.

Penafsiran Kuantitatif Pola Anomali Bouguer

Penafsiran secara kuantitatif yang menggunakan perangkat lunak Gravmag (Pedley, 1991) dilakukan dengan dua penampang anomali, masing-masing sepanjang lintasan $A B$ dan lintasan $C D$ (Gambar 7). Dalam penafsiran kuantitatif ini, sebagai kendali (kontrol) pemodelan digunakan data geologi permukaan, data bor, data geomagnet, data geolistrik (resistivity), data magneto-telluric, dan data gradien termal (thermal gradient) (Sudarman, 1985). Sebagai batuan alas dalam pemodelan ini diperkirakan batuan granitik yang terdapat pada kedalaman sekitar $1-3 \mathrm{~km}$ dengan rapat massa batuan $2,68 \mathrm{gram} / \mathrm{cm}^{3}$ (Gambar 7 dan 8).

Gambar 4. Perkiraan sebaran tubuh batuan intrusi (Sudarman, 1985).

Gambar 5. Model tubuh batuan intrusi berdasarkan penafsiran anomali Bouguer (Sudarman, 1985).

Gambar 6. Model tubuh batuan intrusi berdasarkan penafsiran anomali magnet (Sudarman, 1985).

Gambar 7. Pola anomali Bouguer daerah Pandeglang dan sekitamya (Subagio, 2006).

Gambar 8. Tumpang tindih Gambar 4 dan 7.

Pada penampang $A B$ yang berarah hampir barat timur, nilai anomali mencapai puncaknya (80 mgal) di bagian barat yaitu pada KM 4-6. Ke arah timur, nilai anomali merendah hingga 53 mgal pada KM 25 , kemudian meninggi kembali hingga 64 mgal di km 50. Adanya anomali tinggi pada KM 4-6 disebabkan oleh batuan intrusi Kuarter (rapat massa $2,7 \mathrm{gr} / \mathrm{cm}^{3}$) yang menerobos batuan dasar (rapat massa $2,68 \mathrm{gr} / \mathrm{cm}^{3}$) dan batuan sedimen Tersier (rapat massa $2,5 \mathrm{gr} / \mathrm{cm}^{3}$). Di permukaan, batuan intrusi tersebut ditindih oleh batuan gunung api Kuarter (rapat massa $2,4 \mathrm{gr} / \mathrm{cm}^{3}$). Merendahnya nilai anomali ke arah timur disebabkan oleh beberapa sesar, sehingga membentuk terban.
Pada penampang $C D$ yang berarah hampir utarą selatan, nilai anomali berfluktuasi bergelombang, dan mencapai puncaknya hingga 80 mgal pada KM 20, kemudian merendah hingga 51 mgal pada KM 31. Nilai anomali naik lagi hingga 68 mgal pada KM 37 , kemudian turun hingga 66,5 mgal pada KM 41 , pada KM 48 naik lagi hingga 75 mgal , dan kemudian, turun lagi. Dengan demikian, terdapat tiga puncak anomali, yaitu pada KM 20, KM 37, dan KM 48. Puncak anomali pada KM 20 merupakan puncak anomali yang sama pada penampang AB, ini dikontrol oleh adanya batuan intrusi Kuarter. Puncak anomali lainnya disebabkan juga oleh batuan intrusi Kuarter (rapat massa $2,7 \mathrm{gr} / \mathrm{cm}^{3}$) yang menerobos kerak bumi dan batuan sedimen Tersier. Nilai anomali terendah 51 mgal pada KM 31 merupakan cerminan struktur terban yang terisi oleh batuan sedimen Tersier dan batuan gunung api Kuarter yang sudah teralterasi, sehingga rapat massa kedua batuan tersebut adalah $2,4 \mathrm{gr} / \mathrm{cm}^{3}$ dan $2,3 \mathrm{gr} / \mathrm{cm}^{3}$.

Potensi Panas Bumi

Keterdapatan panas bumi ditunjukkan oleh keberadaan beberapa mata air panas dan solfatara di daerah penelitian. Suhu mata air panas lebih besar dari $60^{\circ} \mathrm{C}$, sedangkan suhu solfatara antara 82 $94^{\circ} \mathrm{C}$ (Sudarman, 1985). Berdasarkan informasi geologi (Sudarman, 1985; Rusmana drr., 1991) terdapat beberapa batuan terobosan Kuarter yang diduga merupakan sumber panas sistem panas bumi di daerah ini. Batuan sedimen Tersier dari Formasi Bojongmanik yang dominant terdiri atas batu pasir,
merupakan batuan yang berfungsi sebagai batuan reservoir sistem panas bumi. Dari pola kelurusan anomali Bouguer (Gambar 9) diduga daerah tersebut dilalui oleh kelurusan struktur geologi yang diperkirakan merupakan kelurusan sesar. Hal ini menunjukkan bahwa Formasi Bojongmanik tersesarkan dan mengakibatkan batuan penyesar formasi ini mengalami rekahan dan hancuran yang mengakibatkan terbentuknya porositas sekunder pada formasi tersebut. Adanya porositas sekunder tersebut dapat berfungsi sebagai reservoir panas bumi lebih besar. Batuan penutupnya terdiri atas batuan gunung api Kuarter yang telah teraletrasi. Batuan ini tidak tersingkap di permukaan (Rusmana drr., 1991), sedangkan informasi bawah permukaan diperoleh dari data bor (Sudarman, 1985).

Sebaran lateral daerah prospek panasbumi dapat diinterpretasikan berdasarkan hasil analisis pemodelan anomali gaya berat yang dibuat melalui dua lintasan pemodelan $A B$ (barat - timur) dan CD (utara - selatan), dengan referensi hasil inetrpolasi data geomagnet, geolistrik, magneto-telluric, dan data gradien termal. Pemodelan penampang CD (utara - selatan) yang melalui Gunung Karang memberikan gambaran sistem panas bumi di daerah Q (Gambar 9). Adanya mata air panas yang bocor melalui jebakan panas bumi diduga oleh adanya patahan. Model ini menunjukkan bahwa batuan intrusi muda yang tidak tersingkap di lapangan diduga berfungsi sebagai sumber panas bumi. Patahan-patahan yang terjadi dan membentuk sistem umbal dan terban merupakan salah satu kendali sistem bidrologi yang memungkinkan air hujan masuk ke dalam tanah, dan terpanaskan, kemudian membentuk uap panas. Uap panas tersebut terjebak di dalam batuan reservoir. Dari model tersebut, juga dapat diketahui bahwa batuan sedimen Tersier yang mempunyai rapat massa 2,4 gram $/ \mathrm{cm}^{3}$ merupakan batuan reservoir sistem panas bumi dengan kedalaman batuan sekitar 2000 m di bawah permukaan laut. Batuan penutup diduga merupakan batuan gunung api Kuarter yang teralterasi rendah oleh sistem panas bumi, dan mempunyai rapat massa batuan sekitar 2,3 gram $/ \mathrm{cm}^{3}$. Sumber panas bumi diduga menyebar ke arah lokasi Daerah P, R, S, T, U, dan V (Gambar 9).

Gambar 10. Kelurusan anomali Bouguer dan perkiraan sebaran daerah prospek panasbumi P, Q, R, S, T, U, V.

KESIMPULAN DAN SARAN

Kesimpulan

- Analisis data geologi dan geofisika terpadu daerah penelitian memberikan gambaran tentang struktur geologi bawah permukaan, berupa struktur patahan yang menimbulkan adanya kontras rapat massa batuan ke arah lateral, dan dapat digunakan sebagai referensi dalam interpolasi data gaya berat.
- Punggungan anomali Bouguer yang mendominasi bagian barat daerah penelitian menunjukkan adanya batuan terobosan bersusunan andesit sampai basal, dan berumur Kuarter. Penafsiran ini didasarkan pada hasil pemodelan anomali Bouguer lintasan AB dan CD yang dikendalikan oleh data geologi permukaan, data bor, data geomagnet, dan resistiviti di daerah penelitian.
- Cekungan anomali Bouguer yang terletak di bagian tengah di daerah Rangkasbitung
merupakan cerminan suatu graben yang mempunyai prospek adanya jebakan panas bumi.

Saran

Disarankan untuk melakukan penelitian geologi, geokimia, dan geofisika terpadu di daerah sebelah timur wilayah Citaman, khususnya di daerah cekungan/terban, karena berdasarkan pemodelan di atas diperkirakan daerah tersebut juga mempunyai prospek sumber panas bumi.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada Kepala Pusat Survei Geologi yang telah mengizinkan penulis untuk mempublikasikan data daerah penelitian dan mendukung secara finansial kegiatan ini.

Ucapan terima kasih juda ditujukan kepada dewan editor dan dewan penerbit yang telah membantu hingga terbitnya makalah ini.

Geo-resources

ACUAN

Adkins J., Sukardi S., Said H., and Untung M., 1978. A Regional Gravity Base Station Network for Indonesia, Publikasi Teknik Seri Geofisika No. 6, Direktorat Geologi Bandung.
Nasution, J., Dan Djaswadi, I., 1997. Peta Anomali Bouguer Lembar Serang, Jawa, Puslitbang Geologi, Bandung.

Pedley, R. C., 1991. Interactive 2.5 D Gravity and Magnetic Modelling Program (Gravmag), User Manual, British Geological Survey, Keyworth, Notingham.
Rusmana, E., Suwitodirdjo, K., Dan Suharsono, 1991, Peta Geologi Lembar Serang, Jawa, Puslitbang Geologi, Bandung.
Subagio, 2006. Deliniasi Cekungan Dangkal Daerah Serang dan Sekitarnya Dengan Metoda Gaya berat, Laporan Akhir, Tidak diterbitkan, Pusat Survei Geologi
Sudarman, S., 1985, Sub-Surface Interpretation at Proposed First Deep Wellsite Citaman Geothermal Area, Banten, West Java, Proceedings Indonesian Petroleum Association, Fourteenth Annual Convention.

Naskah diterima : 28 Maret 2008
Revisi terakhir : 10 Juni 2008

