DINAMIKA SESAR CITARIK

Sidarto
Pusat Survei Geologi
JI Diponegoro No. 57, Bandung 400122

Abstract

SARI Sesar Citarik yang berarah utara timur laut - selatan barat daya memotong Jawa - Barat melalui Pelabuhanratu, Bogor, Bekasi. Aktivitas sesar ini paling tidak sejak tektonik Miosen Tengah dan sampai sekarang masih aktif. Pada periode tektonik Miosen Tengah, sesar ini sebagai sesar trantensional, namun sejak Plio-Plistosen sampai Resen sesar ini berkembang sebagai sesar mendatar mengiri. Sesar Citarik yang aktif ini dapat menimbulkan gempa bumi, sehingga sesar ini harus diperhitungkan dalam perencanaan pengembangan infrastruktur di Jabotabek dan Pelabuhanratu (ibukota Kabupaten Sukabumi dan daerah wisata).

Kata kunci : Sesar Citrarik, Miosen Tengah - Resen, sesar normal, sesar mendatar mengiri

Abstract

The NNE - SSW trending Citarik Fault cut across Western Jawa passing through Pelabuhanratu, Bogor and Bekasi. At least, the fault has been active since Middle Miocene tectonic period. At that time, the Citarik fault was a transtensional fault, however since Plio-Pleistocene until Recent, this faults has been developed as a left strike slip fault. The active Citaraik Fault may generate earthquakes, and therefore it has to be carefully considered in planning infrastructure development in Jabotabek and Pelabuhanratu (the capital of Sukabumi Districtt and a tourist area).

Keywords: Cilarik faut, Middle Miocene - Recent, transtensional fault, left strike slip fault

PENDAHULUAN

Pulau Jawa merupakan bagian dari tepi selatan Paparan Sunda yang merupakan bagian dari Lempeng Benua Eurasia. Kerak Samudra Hindia yang merupakan bagian dari Lempeng Indo-Australia menunjam di bawah Lempeng Benua Eurasia yang lajur tunjamannya membentuk Palung Jawa di lepas pantai selatan Pulau Jawa.
Tumbukan antara kedua lempeng mengakibatkan terbentuknya gaya kompresi utara - selatan yang nisbi tegak lurus terhadap posisi Pulau Jawa. Gaya kompresi ini mengontrol pola struktur geologi (sesar dan lipatan) di pulau tersebut. Dengan sistem gaya kompresi utama, Moody dan Hill (1956) telah mengusulkan konsep tektonik sesar mendatar yang prinsipnya adalah bahwa sesar mendatar (wrench fault) besar yang terjadi di kerak bumi merupakan hasil dari sistem gaya kompresi. Situmorang drr. (1976) yang mendasarkan konsep tektonik tersebut telah membuat model struktur geologi Pulau Jawa. Berdasarkan konsep tersebut semua sesar yang sudah dikenal ada di Pulau Jawa dapat diterangkan pembentukannya dengan orde 1 , orde 2 dan orde 3
(Gambar 1). Menurut peneliti terdahulu (van Bemmelen, 1949; Baumman drr., 1973) di Jawa Barat telah terjadi beberapa periode tektonik. Di pihak lain, Situmorang drr. (1976) telah membuat model struktur, namun tidak dijelaskan kaitannya dengan periode tektonik. Fenomena pergerakan tektonik yang kadang-kadang dengan kecepatan tįnggi dan kadang-kadang bergerak dengan kecepatan rendah, akan menghasilkan ketidakteraturan atau keteraturan sistem struktur geologi yang terbentuk. Produk proses pergerakan ke arah utara Lempeng Samudra Hindia yang menumbuk Lempeng Benua Eurasia dapat diamati khususnya di Pulau Jawa, yaitu adanya pola struktur geologi yang membentuk sistem Jawa, Sunda dan Meratus (Pulunggono \& Martodjojo, 1994, Gambar 2). Pada pola tersebut tidak terdapat pola sesar yang berarah utara timur laut - selatan barat daya, dan tidak dijelaskan mengenai perkembangan setiap pola. Pada peta geologi bersistem Pulau Jawa, yang meliptuti Peta Geologi Lembar JampangBalekambang, Bogor, Jakarta dan Pulau Seribu, Karawang dan Lembar Leuwidamar tidak disebutkan adanya Sesar Citarik yang berarah utara timur laut -

Geo-dynamics

Gambar 1. Pola sesar Pulau Jawa berdasarikan konsep sesar mendatar Moody and Hill, 1956 (Situmorang drr., 1976)

Gambar 2. Pola strukkur Jawa dan sekitarnya (Pulunggono dan Martodjojo, 1994).
selatan barat daya. Sesar ini memotong batuan berumur Oligo-Miosen sampai endapan Resen, sehingga perkembangan sesar ini'menarik untuk dibahas. Dalam tulisan ini akan dibahas dinamika Sesar Citarik yang berarah utara timur laut - selatan barat daya.

Sesar ini dicirikan oleh kelurusan Sungai Citarik, sehingga disebut sebagai Sesar Citarik. Sesar Citarik memotong Pulau Jawa di bagian barat, yang memanjang dari Samudra Hindia, pantai bagian tenggara Teluk Pelabuhanratu, Kota Pelabuhanratu, Sungai Citarik, Bogor, perbatasan Bekasi dan Jakarta; dan menerus ke Laut Jawa.

METODE PENELITIAN

Penelitian diawali dengan pengolahan citra landsat yang terdiri atas dua sceen dengan path/row masingmasing adalah $122 / 65$ dan 122/64, meliputi pembuatan mozaik kedua citra, pemotongan, penajaman, dan penumpangtindihan citra landsat dan citra Space Radar Topographic Mission (SRTM). Data yang meliputi Peta Anomali Bouguer, citra landsat, citra SRTM, data kegempaan disusun dengan metode geographic information system (GIS). Interpretasi geologi dan struktur geologi dilakukan pada data terpadu. Penelitian lapangan, yang meliputi pengukuran elemen struktur geologi (kekar gerus), pengukuran arah jurus dan kemiringan lapisan batuan serta pengukuran arah sebaran batuan terobosan di sepanjang sesar dilakukan pada daerah tertentu dengan tujuan untuk memperjelas hasil interpretasi. Gabungan hasil interpretasi, hasil analisis data lapangan dan kemudian dirangkai dengan tektonik regional digunakan untuk mengetahui dinamika Sesar Citarik.

GEOLOGI REGIONAL

Van Bemmelen (1949) membagi fisiografi JawaBarat menjadi lima, yaitu Dataran Pantai Jakarta, Zona Bogor, Zona Bandung, Zona Pegunungan Selatan, dan Zona Pegunungan Bayah. Sesar Citarik memotong Dataran Pantai Jakarta, Zona Bogor, Zona Pegunungan Selatan, dan Zona Pegunungan Bayah (Gambar 3). Berdasarkan Peta Geologi Lembar Jakarta dan Pulau Seribu (Turkandi drr., 1992) dan

Peta Geologi Lembar Karawang (Sudana dan Achdan, 1992), Dataran Pantai Jakarta tersusun oleh endapan aluvium Kuarter. Dalam Peta Geologi Lembar Bogor (Efendi drr., 1998), Zona Bogor tersusun oleh Formasi Jatiluhur (Miosen Awal), yang bagian atasnya berhubungan menjari dengan Formasi Klapanunggal (Miosen Awal). Kedua formasi ditindih secara selaras oleh Breksi Cantayan yang kemudian diikuti oleh Formasi Bojongmanik. Formasi ini ditindih secara tidak selaras oleh Satuan tuf dan breksi yang berumur Miosen Akhir; sedangkan Zona Pegunungan Selatan diawali oleh batuan sedimen (Formasi Walat, Formasi Batuasih, Formasi Rajamandala, Formasi Jampang, Formasi Bojonglopang, Formasi Lengkong, Formasi Nyalindung, dan Formasi Bentang. Pada Peta Geologi Lembar Leuwidamar (Sujatmiko dan Santosa, 1992), Zona Pegunungan Bayah tersusun oleh Formasi Bayah (Eosen Awal), Formasi Cicarucup (Eosen Akhir - Oligosen Akhir), Formasi Cikotok (Eosen Akhir Oligosen Akhir), Formasi Cijengkol (Oligosen Awal - Oligosen Akhir), Formasi Citarate (Moisen Awal bagian awal), Formasi Cimapag (Miosen Awal bagian akhir), Formasi Sarewe (Miosen Tengah bagian awal), Formasi Badui (Miosen Tengah bagian tengah), Formasi Bojongmanik (Miosen Atas), dan tufa yang terdiri atas Formasi Cimaceri, Formasi Genteng dan Formasi Cipacar yang berumur Pliosen. Batuan di dalam Zona Bogor, Pegunungan Selatan dan Zona Bayah tersebut di atas ditindih secara tidak selaras oleh batuan gunung api Kuarter.
Menurut van Bemmelen (1949), di daerah Jawa Barat dan sekitarnya, paling tidak sudah terjadi dua periode tektonik, yaitu: Periode Tektonik Miosen Tengah yang menyebabkan tegasan utara - selatan dan membentuk lipatan, sesar dan terjadinya batuan terobosan dasit dan andesit horenblenda; dan Periode Tektonik Plio-Plistosen yang mengakibatkan terbentuk struktur lipatan dan sesar yang diakibatkan oleh gaya yang mengarah ke utara, serta terjadi aktivitas magmatisme; sedangkan Baumman drr. (1973) yang telah melakukan penelitian bagian barat daya Jawa, membagi tektonik daerah Jawa Barat menjadi empat fase tektonik, yaitu: Fase Tektonik Oligo-Miosen, Tektonik Miosen Tengah, Tektonik Pliosen Akhir dan Fase Tektonik Kuarter.

Gambar 3. Fisiografi Jawa Barat (van Bemmelen, 1949) dan lokasi Sesar Citarik.

SESAR CITARIK

Keberadaan sesar Citarik dapat dikenali dari data citra landsat, citra SRTM, anomali Bouguer, dan data sebaran pusat gempa dangkal. Sesar ini semakin jelas teridentifikasi ketika semua data tersebut ditumpangtindihkan (Gambar 4).

Interpretasi pada citra

Sesar Citarik terdiri atas banyak segmen kelurusan yang pada diagram mawar (azimut dan panjang) menunjukkan bahwa arah utama sesar adalah U2530 T - U 205-210 T (Gambar 5). Sesar ini pada citra dicirikan oleh kelurusan pantai Selat Pelabuhanratu bagian tenggara; kelurusan Sungai Citarik, munculnya beberapa gunung api yang meliputi Gunung Reuma; Gunung Salak, Gunung Batu dan Gunung Endut di sepanjang sesar, terbentuknya endapan Kipas Aluvium Jakarta. Di samping itu sebaran Formasi Jatiluhur dan Formasi Klapanunggal (Miosen Awal bagian akhir) dalam Zona Bogor menghilang ke arah barat di jalur sesar, dan di bagian barat berubah menjadi Formasi Bojongmanik (Miosen Tengah) yang terdiri atas anggota batuan sedimen dan anggota batugamping. Bukti lain yang mengindikasikan sesar tersebut adalah batuan penyusun Zona Pegunungan Selatan yang berhenti pada jalur sesar dan berubah menjadi Zona Bayah, serta adanya pergeseran (offset) Sungai Cimandiri di bagian muaranya yang bergeser nisbi ke arah selatan (mengiri) (Gambar 6).

Interpretasi Data Anomali Bouguer

Peta Anomali Bouguer Jawa Barat (Wididjono drr., 1997) dipotong sesuai luas daerah penelitian; dan diintegrasikan ke dalam data base Geographic System Information (GIS) dengan data lainnya. Penampakan sesar pada peta anomali ini dicirikan oleh adanya pembelokan kontur di sepanjang kelurusan terutama di bagian selatan, sedangkan di daerah Jakarta dan Bekasi (utara) menunjukkan adanya kelurusan kontur nisbi utara timur laut selatan barat daya (Gambar 4).

Data Kegempaan

Data kegempaan mengacu pada Peta Seismotektonik Indonesia, skala 1:5.000.000 (Kertapati drr., 1998). Di sekitar sesar terdapat enam episentrum yang terjadi pada tahun 1900an dengan kedalaman dangkal dan besarnya bervariasi (Tabel 1 dan Gambar 4).

Tabel 1. Data Pusat Gempa di sekitar Sesar Citarik (Kertapati drr, 2006)

Lokasi	Tahun	Kedalaman (km)	Besaran (MMI)
1	1968	33	4,61
2	1971	33	4,61
3	1975	27	5,$2 ; 5,6$
4	1975	27	5,17
5	1990	53	6,$31 ; 4,77$
6	1995	33	4,4

Gambar 4. Tumpang-tindih citra landsat, citra SRTM, data anomali Bouguer, pusat gempa bumi dan hasil interpretasi citra.

Gambar 5. Diagram mavar kelurusan Sesar Cilarik.

Data lapangan

Di sepanjang pantai tenggara Selat Pelabuhanratu (zona sesar) dijumpai beberapa singkapan intrusi andesit dengan sumbu panjang sejajar arah jurus sesar (Gambar 7). Terobosan andesit ini berumur Miosen Tengah (Sukamto, 1975). Pengukuran kekar gerus dilakukan pada batuan breksi (Formasi Jampang), terobosan andesit, dan lava produk dari gunung api Kuarter Gunung Reuma. Hasil analisis kekar gerus (dengan menggunakan stereonet) pada batuan breksi (Formasi Jampang, Gambar 8 pada 2a dan 2b) menunjukkan telah terjadi dua kali pengaktifan sesar (Tabel 2 dan Gambar 8), yaitu sebagai normal fault (Anderson, 1951) atau left normal strike slip fault (Rickard, 1972); dan sinistral wrench fault (Anderson, 1951) atau normal left strike slip fault (Rickard, 1972). Berdasarkan pengukuran kekar pada intrusi andesit (Lokasi 3, Tabel 2 dan Gambar 8), sesar ini sebagai sinistral wrench fault (Anderson, 1951) atau normal left strike slip fault (Rickard, 1972), sedangkan hasil analisis kekar yang diukur pada lava Gunung Reuma
yang berumur Kuarter (Lokasi 1, Tabel 2 dan Gambar 8)) menunjukkan sebagai sinistral wrench fault (Anderson, 1951) atau left strike slip fault (Rickard, 1972).

DISKUSI

Batuan yang tersingkap dan terpotong oleh Sesar Citarik berumur dari Oligo-Miosen sampai Resen, sehingga perkembangan sesar dapat diketahui dari Fase Tektonik Miosen Tengah sampai sekarang. Perkembangan Sesar Citarik pada tektonik Miosen Tengah dapat diketahui berdasarkan data pengukuran kekar dalam Formasi Jampang dan munculnya terobosan andesit di sepanjang zona sesar. Hasil analisis di Formasi Jampang menunjukkan dua kemungkinan, yaitu 2a dan 2b (Gambar 8). Setelah hasil analisis tersebut dibandingkan dengan hasil analisis kekar pada batuan yang lebih muda, dapat disimpulkan bahwa Sesar Citarik merupakan sesar transtensional pada tektonik Miosen Tengah (Gambar 9). Penampakan ini dapat diperjelas dengan munculnya intrusi andesit di sepanjang zona sesar yang sumbu memanjangnya sejajar dengan arah jurus sesar yang menunjukkan bahwa tegasan utama terbesar nisbi vertikal, sedangkan tegasan utama terkecil (tension) searah dengan sumbu memanjang intrusi (Gambar 7). Gaya utama terbesar nisbi vertikal, namun hasil analisis kekar menunjukkan adanya gerakan mendatar, yaitu berarah nisbi $\cup 30$ T - U 210 T, Sesar Pola Meratus (Pulunggono dan Martodjojo, 1994) berkembang sebagai sesar mendatar menganan, yang sesuai dengan model sistem sesar di Pulau Jawa (Situmorang drr, 1976). Hubungan Sesar Citarik dan sistem Sesar Sistem Meratus dengan gaya tektonik pada periode tektonik Miosen Tengah dapat dilihat pada Gambar 9.

Tabel 2. Hasil Analisis Stereonet.

Lakasi	Kedudukan Kekiel	Kedudukan Kelar II	σ_{1}	σ_{2}	0_{5}	plach	Net slip	Kedadukan sesar	Klusifikasi Andersen (1951)	Klasifikasi Rickard (1972)
1	U160 T/78	U303 T/80	15, U203	60, U318	27,0105	$4,4 \% \mathrm{BL}$	44, 1222	U221T/60	Suistral minench fauls	Lefis silie stip fautr
1	0351 T/71	U237 T/78	24, 1184	54, U231	2, U328	26,168D	26, 1223	(12211/88	Simithed wrench fande	Norsal lef strike stiog buwle
2 b	U761/73	U237 7/88	44, U30	33, U245	17,0143	$50.73{ }^{\circ} \mathrm{TL}$	41, U8	1221748	Normaf /anle	Lefil noravil strike slip fawh
3	U2181/82	U339T/63	35, U188	57, U25	10, U283	33,85\%BL	35, U277	U221T/80	Siwistral wnoch foult	Nawal icf strike sfiep 6 ant

Gambar 6. Ciri-ciri Sesar Citarik.

Gambar 7. Intrusi andesit di sepanjang zona sesar.

Gambar 8. Sesar Citarik dan hasil analisis stereonet.

Gambar 9. Citarik pada periode tektonik Miosen Tengah.

Perkembangan pada tektonik Plio-Plistosen dapat diketahui dari hasil analisis kekar dalam Formasi Bayah (lokasi 2b) dan intrusi andesit (lokasi 3). Menurut hasil analisis kekar pada Formasi Bayah (Gambar 10 dan Tabel 2), sesar ini merupakan sesar sinistral wrench fault (Anderson, 1951) atau normal left strike slip fault (Rickard, 1972); sedangkan menurut hasil analisis kekar pada intrusi andesit (Gambar 10 dan Tabel 2), sesar ini termasuk sinistral wrench fault (Anderson, 1951) atau normal left strike slip fault (Rickard, 1972). Kedua hasil analisis menunjukkan hasil yang nisbi sama, dengan kemiringan sesar ke arah barat daya dan terjal (hasil analisis masing-masing menunjukkan kedudukan sesar U $221 \mathrm{~T} / 86$ dan U $221 \mathrm{~T} / 80$), arah tegasan utama terbesar (σ_{1}) nisbi utara selatan. Pemunculan gunung api Reuma yang kepundannya sudah tererosi dan diduga berumur Plio-Plistosen dikontrol oleh struktur pull apart sesar ini, karena terletak di antara dua segmen (Gambar 10).
Aktivitas Sesar Citarik pada tektonik Kuarter dapat diketahui dari analisis kekar pada lava Gunung Reuma, pembelokan alur Sungai Cimandiri, terbentuknya rangkaian gunung api Kuarter Gunung Endut, Gunung Batu dan Gunung Salak, terbentuknya endapan Kipas Aluvium Jakarta, dan hubungannya dengan sebaran episentrum gempa bumi.

Hasil analisis kekar pada lava Gunung Reuma (lokasi 1) menunjukkan sesar sinistral wrench fault (Anderson, 1951) atau left strike slip fault (Rickard, 1972) dengan kedudukan sesar U $220 \mathrm{~T} / 60$ (Tabel 2dan Gambar 8); arah gaya utama terbesar U 203 TU 23 T. Di dekat muara, Sungai Cimandiri berbelok ke arah selatan. Pembelokan ini diduga disebabkan oleh pergerakan sesar. Berdasarkan arah pergeseran sungai ini, Sesar Citarik merupakan sesar mendatar mengiri.
Rangkaian gunung api Kuarter Gunung Endut, Gunung Batu, dan Gunung Salak terletak di antara dua segmen (Gambar 10). Berdasarkan analisis kekar dan pergeseran Sungai Cimandiri, Sesar Citarik merupakan sesar mendatar mengiri, sehingga lokasi rangkaian gunung api tersebut diduga merupakan daerah bukaan (pull apart) yang dapat berfungsi sebagai celah keluarnya magma dan membentuk ketiga gunung api tersebut.

Di bagian Jawa Barat utara, Sesar Citarik memotong endapan aluvium (Dataran Pantai Jakarta) yang berumur Resen, sehingga sesar ini merupakan sesar aktif. Sesar aktif bergerak secara perlahan-lahan sepanjang waktu sampai sekarang. Akan tetapi pergerakan atau pergeseran batuan tersebut ditahan oleh gaya geser batuan (friction). Pada suatu waktu gaya yang terakumulasi besarannya melebihi besaran gaya geser batuan, sehingga batuan pada sesar (yang sulit bergerak akibat gaya gesekan batuan) melepaskan energi dan menimbulkan suatu getaran, dan disebut sebagai gempa bumi. Di sepanjang zona Sesar Citarik terdapat beberapa pusat gempa bumi yang terjadi pada tahun 1900an (Tabel 1). Di bagian selatan di lepas pantai dan di bagian utara, pusat gempa terletak tidak jauh dari zona kelurusan, yang menunjukkan bahwa kemiringan sesar terjal; sedangkan di bagian tengah (lokasi pusat gempa 3,4 dan 5), pusat gempa yang kedalamannya hampir sama terletak agak menjauh ke arah barat. Hal ini menunjukkan bahwa kemiringan bidang sesar lebih landai dibandingkan di bagian utara dan selatan. Penampakan ini menunjukkan bahwa kemiringan sesar ini tidak sama, sehingga sesar ini diduga merupakan sesar transform.

Sesar Citarik merupakan sesar aktif yang cukup besar, padahal sesar ini melalui daerah-daerah penting, seperti Jakarta (ibukota negara), Bogor, dan Bekasi yang merupakan daerah penyangga perkembangan penduduk Jakarta; dan Pelabuhanratu merupakan daerah wisata pantar dan sebagai ibu kota Kabupaten Sukabumi. Maka sesar ini perlu diwaspadai, terutama dalam perencanaan pengembangan kota di daerah tersebut di atas karena pada suatu waktu đapat menimbulkan gempa bumi; dan seandainya ada korban jiwa dapat diperkecil. Khusus di daerah Pelabuhanratu yang merupakan daerah wisata pantai perlu dibangun suatu alat peringatan tsunami karena bencana ini dapat terjadi oleh pengaruh subduksi yang terletak di Palung Jawa, dan diakibatkan oleh aktivitas sesar yang memanjang ke arah Lautan Hindia.

Di Zona Pegunungan Bayah terdapat beberapa daerah pertambangan mineral logam berharga, yaitu Cikotok, Cirotan, dan Pongkor; dan lapangan panas bumi Gunung Salak. Secara tektonis, sejak Tersier sampai Kuarter zona ini termasuk kedalam busur gunung api (Asikin, 1974). Di dalam busur gunung api endapan hidrotermal dan sistem geotermal berhubungan dengan porpiri, skarn dan batuan intrusi (Corbett dan Leach, 1996). Dalam hal ini

Geo-dynamics

sesar sebagai saluran pemunculan batuan intrusi yang berfungsi sebagai sumber panas sistem panas bumi. Pemunculan intrusi dalam sistem sesar mendatar (strike slip fault) terdapat di dalam splay atau jog. Dalam Zona Pegunungan Bayah terdapat beberapa segmen kelurusan yang nisbi sejajar
dengan Sesar Citarik (Gambar 11). Lokasi daerah mineralisasi tersebut di atas terdapat di antara segmen kelurusan, yang merupakan zona bukaan (tension) sistem sesar utara timur laut - selatan barat daya. Hal ini menunjukkankan bahwa sistem sesar tersebut sama dengan Sesar Citarik.

Gambar 10. Sesar Citarik pada periode tektonik Plio-Plistosen dan Kuarter.

Gambar 11. Kelurusan sesar di Zona Pegunungan Bayah hubungannya dengan daerah mineralisasij dan lapangan panas bumi Gunung Salak.

KESIMPULAN DAN SARAN

Kesimpulan

Sesar Citarik yang berarah U 30 T - U 210 T paling tidak sudah ada sejak periode tektonik Miosen Tengah, yang merupakan sesar aktif secara transtensional. Pada periode tektonik Plio-Plistosen dan periode Kuarter sebagai sesar mendatar mengiri, dengan kemiringan ke arah barat laut. Sesar ini saat ini merupakan sesar aktif yang dapat menimbulkan bencana gempa bumi.

Pasangan sesar ini mengontrol pembentukan mineralisasi dan menunjukkan terdapatnya lapangan panas bumi di Zona Pegunungan Bayah.

Sảran

Sesar aktif ini melalui daerah-daerah penting (Pelabuhanratu, Bogor, dan Bekasi yang dekat dengan Jakarta), sehingga keberadaan sesar ini perlu diwaspadai, mengingat daerah yang dilewati padat penduduk dan pembangunan infrastrukturnya berkembang sangat pesat. Pada umumnya sesar tidak terbentuk sendirian, melainkan membentuk pasangan. Sesar yang nisbi' sejajar dengan Sesar Citarik ini perlu diperhatikan karena sesar tersebut mempunyai nilai ekonomis seperti di Zona Pegunungan Bayah.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada Kepala Pusat Survei Geologi yang telah mengizinkan penulis untuk mempublikasikan data daerah penelitian.

ACUAN

Anderson, E.M., 1951. The Dynamics of Faulting and Dyke Formation With Applications to Britain. Oliver and Boyd Ltd.; 206 pp.
Asikin, S., 1974. Evolusi Geologi Jawa Tengah dan sekitarnya ditinjau dari segi tektonik tektonik - dunia yang baru. disertasi doktor, Institut Teknologi Bandung, tidak terbit.

Baumman, P., De Genevraye P., Samuel, L., Mudjito \& Sajekti, S., 1973. Contribution To The Geological Knowledge of South West Java. Proc. Indon. Petr. Ass. Sem. Ke dua 105-108.

Bless, J.L., and Feuga, B., 1986. The Fracture of Rocks. Anchor Brendon Ltd, Great Britain; 131 pp.
Corbett, G.J., and Leach, T.M., 1996. Southwest Pasific Rim Gold-Copper System: structure, Alteration and Mineralization. Manual Workshop, Jakarta.
Effendi, A.C., Kusnama dan Hermanto B., 1998. Peta Geologi Lembar Bogor, Jawa, skala 1:100.000. Pusat Penelitian dan Pengembangan Geologi, edisi ke dua. Bandung
Kertapati E.K., Soehaimi, A., Djuanda, A., dan Efendi, I., 1998. Peta Seismotektonik Indonesia skala 1:5.000.000. Pusat Penelitian dan Pengembangan Geologi, edisi ke tiga. Bandung
Moody, J.D. and Hill, M.J., 1958. Wrench-Fault Tectonics. Geol. Soc. Am. Bull. 67 : 1207-1246.
Pulunggono, A. dan Martodjojo, S., 1994. Perubahan tektonik Paleogen - Neogen merupakan peristiwa tektonik terpenting di Jawa. Proc. Sem. Ulang-tahun Kampus Bayat, Jurnal Teknik Geologi Universitas Gadjah Mada; 1-14.

Rickard, M.J., 1972. Fault Classification: discussion. Geol. Soc. of Am. Bull. 83 : 2545-2546.
Situmorang, B., Siswoyo, E., and Paltrinieri, F., 1976. Wrench fault tectonic and aspects of hihrocarbon accumulation in Java. Proc. Indon. Petr. Ass. Sem. V, Jakarta; 53-57.
Sudana and Achdan, A., 1992. Peta Geologi Lembar Karawang, Jawa, Skala 1:100.000. Pusat Penelitian dan Pengembangan Geologi. Bandung.
Sujatmiko dan Santosa, S., 1992. Peta Geologi Lembar Leudamar, Jawa, skala 1:100.000. Pusat Penelitian dan Pengembangan Geologi. Bandung
Sukamto, R., 1975. Peta Geologi Lembar Jampang dan Balekambang, Jawa, skala 1:00.000. Pusat Penelitian dan Pengembangan Geologi. Bandung.
Turkandi, T., Sidarto, Agustyanto, D. A., dan Purbo Hadiwidjoyo, M.M., 1992. Peta Geologi Lembar Jakarta dan Kepulauan Seribu, Jawa, skala 1:100.000. Pusat Penelitian dan Pengembangan Geologi, terbit.

Van Bemmelen, R.W., 1949. The Geology of Indonesia, vol. 1A. The Hague, Martinus Nijhoff; 732 pp.
Wididjojo, B.S., Tasno, T.P., dan Sardjono, 1997. Model Struktur Kerak Selat Sunda dan Sekitarnya Berdasarkan Analisis Data Gayaberat dan Kegempaan. Kumpulan Makalah Seminar Hasil Penelitian dan Pemetaan Geologi dan Geofisika Pusat Penelitian dan Pengembangan Geologi, Bandung; 231-242.

```
Naskah diterima : 29 Januari 2007
Revisiterakhir : }10\mathrm{ Juni 2008
```

