Geo-dynamics

MORFOSTRATIGRAFI TUF IGNIMBRIT MANINJAU DI NGARAI SIANOK, DUSUN BELAKANGBALOK-BUKITTINGGI, SUMATERA BARAT

S. Poedjoprajitno
Pusat Survei Geologi
JI. Diponegoro No. 57 Bandung

Abstract

SARI Plato ignimbrit Ngarai Sianok di Dusun Belakangbalok merupakan produk 2 perioda letusan Gunung api Maninjau. Di antara dua perioda letusan itu dibatasi oleh hamparan endapan fluvial asal gunung api, berupa pasir sangat kasar konglomerat. Endapan piroklastika di kedua perioda tersusun oleh tuf batuapung dan di beberapa tempat mengandung arang kayu. Endapan piroklastika tersebut tersesarkan dan membentuk panorama undak seperti yang terlihat sekarang ini. Terbentuknya Ngarai Sianok diperkirakan dampak dari reaktivasi sesar pada batuan alas yang kemudian endapan ignimbrit di atasnya.

Kata kunci : morfostratigrafi, , tuf batuapung Maninjau,, undak, sesar, plato

Abstract

The ignimbtrite plato of Sianok Valley at Belakangbalok Village was produced by two periods of Maninjau volcanic eruptions. The two eruption periods are separated by fluvio volcanic deposits, consisting of very qoarse sand and conglomerate. The two periods pyroclatic deposits at containing pumice and locally several coal. These pyroclatic deposits were faulted and formed terrace morphology. The Sianok Valley is considered as an effect of the reactivation of basement fault throughting the ignimbrite deposits.

KenwordS : morphostratigraphy, Maninjau pumice tut, terrace, faull, plato

PENDAHULUAN

Plato ignimbrit Bukittinggi merupakan fenomena alam hasil kegiatan gunung api purba yang sangat luas penyebarannya, dan didominasi oleh batuan piroklastika berbutir halus yang dikenal dengan nama tuf ignimbrit. Data bawah permukaan menginformasikan bahwa tuf ignimbrit mencapai ketebalan 150 m di desa Baso,
wilayah timur Bukittinggi (komunikasi pribadi dengan Distamben Provinsi Padang). Karena sifatnya yang retas dan padu, dibeberapa tempat tuf ignimbrit ini mudah retak dan runtuh membentuk ngarai berdinding terjal serta dalam.
Verstappen (1983) mengatakan bahwa tuf ignimbrit di daerah penelitian ini berasal dari aktivitas letusan Gunung api Maninjau yang berjarak kurang lebih 15 km di sebelah barat lokasi penelitian. Umur tuf ignimbrit lebih tua dari umur endapan gunung api Marapi, Tandikat dan Singgalang. Secara morfostratigrafi dapat dibuktikan bahwa hasil endapan gunungapi Marapi, Singgalang dan Tandikat menutupi sebagian tuf ignimbrit Maninjau.

Di daerah penelitian, keberadaan tuf ignimbrit ini membentuk bentangalam plato tertoreh kuat. Sungai-sungainya berkembang dengan panorama khas, berdinding lembah terjal lagi lebar dan di beberapa termpat berkembang morfologi undak. Bentangalam semacam ini mempunyai daya tarik wisata alam berbobot tinggi, ditinjau dari ilmu kebumian plato ignimbrit berumur Pliosen (Kastowo, dkk, 1996) mempunyai lembah begitu dalam, artinya torehan (incision) sungai Sianok selama ini mampu menoreh sedalam itu ($>50 \mathrm{~m}$). Peristiwa tersebut dapat terjadi bila ada kekuatan kebumian lain yang memfasilitasi penorehan plato ignimbrit. Oleh sebab itu, penelitian ini berusaha mengungkapkan mekanisme keterdapatan tuf ignimbrit dan mekanisme terbentuknya ngarai di lokasi penelitian.

Secara geografi lokasi penelitian merupakan bagian dari alur Sungai Sianok yang menoreh plato ignimbrit Bukittinggi di Desa Belakangbalok, Sumatera Barat dan terletak pada koordinat $0^{\circ} 03.95-0^{\circ} 04.00 \mathrm{LS}$ dan $100^{\circ} 21.41-100^{\circ} 22.50 \mathrm{BT}$ (Gambar 1).

Geo-dynamics

Tujuan penelitian adalah untuk mengetahui runtunan morfologi (morfosratigrafi) undak tuf ignimbrit di Ngarai Sianok dan sekaligus untuk mengetahui genesa (pengaruh tektonik atau bukan tektonik) dari Sungai Sianok yang berkembang sebagai lembah raksasa atau ngarai seperti sekarang ini.

Metoda penelitian dilakukan dengan mengamati singkapan dan membuat penampang tegak urutan
endapan piroklastika, serta mengkorelasikan singkapan batuan secara horizontal sepanjang dinding lembah. Selanjutnya dilakukan pengukuran ketinggian terhadap posisi masing-masing singkapan yang diperkirakan mempunyai level ketinggian yang sama.

Gambar 1. Peta lokasi penelitian morfotektonostratigrafi.

GEOLOGI UMUM

Penelitian geologi di daerah Sumatera Barat telah dilakukan oleh sejumlah ahli, seperti Kastowo dkk. (1996), Westerfeld (1953), Verstappen 1973, dan secara regional Tjia (1977) membahas tentang sesar Sumatera.
Mengacu hasil pemetaan geologi oleh Kastowo dkk. 1996, bahwa daerah penelitian tersusun oleh tuf batuapung dan andesit (Qpt). Sedangkan kandungan tuf batuapung umumnya terdiri dari serabut gelas dari 5 hingga 80% fragmen batuapung putih (hampir tidak mengandung mineral mafik). Fragmen batuapung tersebut berukuran 1 hingga 20 cm , agak kompak. Setempat terdapat lapisan pasir yang kaya akan kuarsa, juga lapisan kerikil yang terdiri dari komponen kuarsa, batuan gunung api dan batugamping. Setempat bongkah obsidian maupun pitchstone kelabu kemerahan sampai kecoklatan, baik masih segar dan yang sudah lapuk. Tuf ini dikenal sebagai Tuf Maninjau Verstappen (1973). Penamaan ini didasarkan atas sumbernya, yang diduga berasal dari erupsi terakhir kaldera Maninjau atau erupsi celah yang hubungannya dengan jalur Sesar besar Sumatera (Westerfeld, 1953). Selanjutnya Verstappen (1973) melaporkan bahwa sebagian endapan tuf tersebut membentuk bentangalam plato tuf ignimbrit Bukittinggi.
Kumpulan batuan bersusunan andesit (basal) terdiri dari aliran-aliran yang tak teruraikan, lahar, fanglomerat dan endapan kolovium yang lain, berasal dari gunungapi strato yang berbentuk kerucut dan kurang mengalami pengikisan, berumur Plistosen sampai Holosen (Kastowo dkk. 1996).

Kastowo dkk. (1996) mengatakan bahwa: secara umum, arah struktur di Lembar Padang adalah baratlaut-tenggara. Pada batuan pra-Tersier, selain arah tersebut terdapat arah timurlaut-baratdaya dan utara-selatan. Pelipatan pada batuan Tersier umumnya mempunyai kemiringan tidak lebih dari 20°, sedangkan pada batuan pra-Tersier lebih tajam. Sesar utama di daerah ini adalah bagian dari sesar Sumatera yang berarah baratlaut-tenggara dan berupa sesar geser menganan yang berkaitan dengan pembentukan gunung berapi. Selain itu terdapat pula yang berarah timurlaut-baratdaya dan utara-selatan. Tektonika pertama yang dijumpai di lembar ini terjadi pada Perm Akhir berdasarkan data peta geologi Lembar Solok yaitu adanya terobosan granit yang diikuti pengangkatan. Sedimen yang terangkat adalah sediment laut dangkal berumur Karbon
hingga Perm Tengah dan batuan gunung api Perm. Pada Mesozoikum terjadi sedimentasi laut dangkal diikuti pengangkatan, terobosan, pemalihan dan pensesaran di Jaman Kapur dengan disertai terangkatnya batuan ofiolit. Tektonik Tersier diawali kegiatan magmatisme, kemudian diikuti sedimentasi lingkungan darat hingga laut dangkal, dan pada zaman Kuarter dikuasi oleh kegiatan gunung berapi.
Secara kegeomorfologian (Verstappen, 1973), daerah penelitian dan sekitarnya masuk ke dalam median graben Pulau Sumatera. Menurutnya secara regional daerah penelitian masuk ke dalam sistim punggungan Bukitbarisan, dimana poros dan igir (punggungan) lajur Bukitbarisan tersesarkan dan runtuh sebagai graben. Di alam, peristiwa tersebut ditunjukkan dengan perselingan di antara blok tinggian (high block) diisi oleh dataran aluvium, yang diindikasikan sebagai blok yang mengalami penurunan (submerged block, Gambar 2). Lebih lanjut Verstappen (2000), dalam peta geomorfologi Indonesia skala 1:5.000.000, (Gambar 3) menyatakan bahwa daerah penelitian termasuk unit bentuklahan struktur dan gunungapi. Bentuklahan struktur yang dimaksud adalah blok pegunungan tertoreh dengan beberapa relik planasi setempat.

Tektonik Zona Sesar Sumatera

Menurut Tjia (1977), Zona Sesar Sumatera terdiri dari 18 segmen sesar, mayoritas segmen tersebut bergerak menganan en echelon. Ditemukan depresi yang melebar dimana sesar normal terjadi, terletak pada pertemuan antar sesar en echelon. Secara kinematik diduga pertemuan sesar merupakan subyek tension pergeseran menganan sepanjang sesar Sumatera.

Tjia (1977) juga memprediksi bahwa rekahan tensional (sensulato) menjurus berarah utara-selatan dan timur-barat. Arah ini sering ditandai dengan kelurusan cekungan dan kelurusan gunung api dekat cekungan. Zona sesar Sumatera mempunyai arah jurus $\mathrm{N} 330^{\circ} \mathrm{E}$ - $\mathrm{N} 320^{\circ}$, panjang segmen beragam antara 25 dan 190 km , tetapi rata-ratanya 100 km . Panjang zona sesar tersebut sekurang-kurangnya 1600 km . Material gunung api mengaburkan hubungan antara masing-masing segmen sesar, namun secara umum hampir semua segmen bergerak menganan en echelon (merencong) dan hanya dua kasus yang menunjukkan gerakan mengkiri yaitu antara segmen Mekakau dengan Keruh-Musi dan antara Ulu Aer dengan Batangtoru.

Legenda

Gambar 2. Peta sketsa Morfostruktur regional daerah Padangpanjang dan sekilarnya (Verstappen, 1973).

Gambar 3. Peta geomorfologi Pulau Sumatra (dikutip dari sebagian peta geomorfologi Indonesia, Verstappen, 2000).

Zona Sesar Sumatera terdiri dari sejumlah segmen sesar yang agak lurus dan saling en echelon satu sama lain. Sesar tersebut biasanya dekstral, masingmasing segmen sesar biasanya terdiri dari lembah sempit dengan tepian yang sesajar atau hampir sejajar (biasanya sesar-berjenjang/stepfaulted) dengan lebar kurang satu kilometer, tetapi ada juga lembah/depresi memanjang lebih lebar (dua kilometer atau lebih). Depresi yang lebih lebar biasanya ditemukan pada pertemuan antara kedua segmen sesar (Tjia, 1977).

Morfologi Kawah Danau Maninjau

Maninjau sekarang merupakan jejak danau kawah gunung api, semula oleh Verstappen (1973) dikatakan bahwa Danau Maninjau tumbuh sebagai Gunung api strato. Material hasil letusannya menutupi terutama kearah baratlaut, barat dan tenggara. Pola aliran memancar dengan torehan yang dangkal merupakan ciri khas daerah di sekitarnya. Aliran fluvial gunungapi Maninjau menutupi daerah timurlaut dan timur hingga daerah penelitian dengan sebaran terbatas karena terhalang oleh rangkaian pegunungan yang lebih tua. Di beberapa tempat sering bermunculan batuan berumur lebih tua dari plato tuf yang menutupinya, torehan sungai di sekitar daerah plato sangat dalam, curam dan berdinding tegak. Verstappen (1973) sangat terkait dengan kondisi morfologi lembah Sianok secara umum dan khususnya lembah Sianok di daerah penelitian. Bemmelen (1949) berpendapat bahwa, batuan yang bermunculan di dinding sebelah timur dari depresi volkano tektonik tersebut merupakan komplek batuan-batuan basement (batuan dasar) antara lain: granodiorit, diabas, fililt skis, dan batugamping.

STRATIGRAFI TUF MANINJAU DI DUSUN BELAKANG-BALOK

Di daerah penelitian Tuf Maninjau terususun oleh satuan tuf berbatuapung dengan diameter 0.5-2 cm , kadang dijumpai butiran batuapung hingga berdiameter 10 cm , agak kompak setempat terdapat lapisan pasir yang kaya akan kuarsa, juga ditemukan lapisanlapisan kerikil yang terdiri dari komponen kuarsa, batuan gunung api, batugamping dan kadang ditemukan granit. Pada satuan tuf batuapung kadang
ditemukan lapisan pemisah berupa bolder dengan komponen yang beragam mulai dari andesit, granit dan kadangkala batugamping. Di beberapa tempat menunjukkan struktur sedimen kerukan, perlapisan pemilihan normal (graded-bedding), silang siur, dan laminasi sejajar. Westerveld (1953) dalam Kastowo dkk (1996), mengatakan bahwa endapan tuf mungkin berasal dari erupsi terakhir kaldera Maninjau, atau erupsi celah kaitannya dengan jalur sesar besar Sumatera.

Hasil lintasan pengamatan lapangan (Gambar 4) menunjukan bahwa Tuf Maninjau di daerah penelitian dapat dipisahkan menjadi dua perioda pengedapan, yaitu : perioda pengedapan Satuan Tuf Maninjau I (bawah/tua) tebal lebih dari 3 m dan perioda pengedapan Satuan Tuf Maninjau II (atas/muda) tebal lebih dari 5 m (Foto 1). Kedua tuf dipisahkan oleh endapan sungai.

Satuan Tuf Maninjau I (bawah)

Satuan Tuf Maninjau I tersusun oleh tuf halus dengan kandungan batuapung tersebar secara tidak merata diseluruh tubuh endapan, berwarna abu-abu terang, masif, padat, dengan ketebalan lebih dari 3 m . Kemiringan lapisan endapan sangat kecil (sekitar 4° miring ke arah utara - utara timur). Kadang dijumpai tuf kerikilan berwarna abu-abu gelap, mengandung banyak fragmen batuapung dan andesit, membentuk struktur lensa. Tuf kerikilan hadir sebagai selingan maupun sisipan diantara tuf abu-abu terang yang masif, mengandung fragmer arang kayu dengan diameter mencapai 20 cm (Foto 2 dan 3). Tebal selingan antara 10-15 cm (Foto 4, Gambar 6).

Sifat fisik Satuan Tuf Maninjau I mirip dengan unit aliran piroklastika yang disebut sebagai tuf ignimbrit. Selby (1985), mengutarakan bahwa proses terbentuknya tuf ignimbrit adalah bagian dari peristiwa erupsi gunungapi yang menghasilkan endapan aliran piroklastik jenis nuees ardente (wedus gembel) dan aliran abu berbatu apung. Secara normal tuf ignimbrit tersusun dari material tubuh gunungapi yang ikut terbawa sewaktu terjadi erupsi. Aliran gas panas yang menerobos melalui lubang kepundan dengan kecepatan tinggi mengangkut tepra beberapa kilometer ke dalam atmosfer. Selanjutnya aliran panas tersebut
terperangkap dalam atmosfer membentuk arus konveksi, menyebabkan awan panas terus membubung. Bagian dari awan panas yang memuat fragmen batuan mempunyai kepekatan lebih besar daripada udara sekeliling menyebabkan kehilangan panas dan material dalam awan akan gugur, mengalir dengan kecepatan tinggi menuruni lereng atau lembah, sebagai endapan terbawah dari keseluruhan unit tuf ignimbrit. Sedangkan hembusan gas yang membawa abu berbatuapung dan fragmen batuan
akan diendapkan terletak di atasnya dan biasanya menunjukkan struktur sediment berlapis. Aliran yang paling atas kaya akan gas bergerak sebagai aliran turbulen menghasilkan endapan yang laminar.

Tuf Maninjau I membentuk 3 undak, dimana masing masing undak dipisahkan oleh dinding terjal dan dicirikan oleh terputusnya sebaran endapan tuf Maninjau oleh satuan endapan sungai.

Gambar 4. Peta lintasan pengamatan.

Foto 1. Dinding Ngarai Sianok bagian timur memberikan banyak informasi tentang perioda endapan tuf batuapung Maninjau, yaitu periodal (bawah)dan perioda Il (atas), di antara kedua periode dipisalkan oleh endapan fluvio vulkanik dengan ragam struktur sedimen fluviatil, diantaranya adalah erosi dasar sungai, graded bedding, silangsiur dan laminasi sejajar. Ciri tersebut dapat diikuti sepanjang dinding Ngarai dan di beberapa tempat tersesarkan dan memununjukkan loncatan tegak anfara $85 \mathrm{~cm}-6 \mathrm{~m}$, sehlingga mombentuk moriologi undak. Beberapa screeslope menyulitkan pengamatan. A-A' adalah posisi pembuatan kolom penampangtegak. Arah kamera Utara-Timur, Lokasi antara Sp 3 .

Gambar 5. Sketsa morfostratigrafi Tuf Maninjau di Belakangbalok serta mekanisme terbentuknya undak, dimana Tuf Maninjau ll membentuk 5 undak. Undakterbentuk oleh sesar normal lokal dan diliutioleh proses pengendapanalur sungai purba. Arah sketsa N5 ${ }^{\circ}$.

Foto 2. Arang kayu yang tertanam dalam tuf batuapung Maninjau II bagian tengah, tersebar tidak merata, terletak 7 m di atas alur sungai sekarang. Lokasi Sp5.

Foto 3. Arang kayu yang terbawa dalam tuf batuapung Maninjau I bagian atas, terletak 1 m dari dasar sungai sekarang. Lokasi SP3.

Satuan endapan sungai

Satuan endapan sungai, ditemukan sebagai alas Satuan Tuf Maninjau II, dan tersusun oleh beraneka ragam fragmen batuan dengan ukuran yang paling besar mencapai diameter 20 cm , membulatmembulat tanggung. Fraksi kasar tersebut berupa pasir kerikilan dan konglomerat aneka bahan yang mengalasi endapan Tuf Maninjau dan diduga bukan merupakan endapan murni gunungapi melainkan endapan fluvio-volcanic (fluvial-gunungapi) (Foto 5, Gambar 5). Sruktur sedimen silang siur dan laminasi sejajar kerap ditemui pada lapisan alas endapan Satuan Tuf Maninjau II atau lapisan selang antara kedua tuf, jejak alur kerukan (scour) sering ditemui disepanjang pertemuan antara Tuf I dan Tuf II (Foto 6 dan 7). Sebaran endapan fluvial gunung api ini dapat

Foto 4. Singkapan tuf kerikilan hadir sebagai selingan Maupun sisipandi antara tuf abu-abu terang masif, tersingkap di tebing timur Ngarai Sianok di Kelurahan Belakangbalok

Gambar 6 Sketsa foto diatas menunjukkan singkapantuf kerikilan hadir sebagai selingan, maupun sisipan di antara tuf abu-abu terang masif. Terlihat hubungan antara Satuan tuf Maninjau I dan Tuf Maninjaull, serta proses geomorfologi yang sedang berlangsung (M) dan sangat umum teriadi pada tebing ngarai, mungkin dikemudian har hasil proses geomorfologi termuda tersebut bila tersimpan baik akan menjadi satuan morfostratigrafi termuda di Ngarai
diikuti terus sepanjang dinding lembah, namun di beberapa tempat berubah ketebalannya dan terpotong oleh sesar normal. Kenampakan morfostratigrafi tersebut dapat ditunjukan pada Foto 8. Material penyusun pada zone pertemuan diantara ke dua tuf tersebut umumnya berwarna coklat kuning-kemerahan atau coklat kehitaman. Berpindahnya alur Sungai Sianok semata-mata mencari tempat yang lebih rendah, dan difasilitasi mekanisme pensesaran undak, pada saat lokal graben terbentuk. Tersesarnya tumpukan tuf Maninjau yang diekspresikan sebagai bentuklahan undak, diperkirakan semata-mata batuan alas tempat endapan tuf Maninjau bergerak/bergeser.

Satuan Tuf Maninjau II

Satuan Tuf Maninjau II tersusun oleh tuf abu-abu terang, berbutir halus, padat, banyak mengandung fragmen batuapung dan butir kuarsa tersebar merata, dijumpai beberapa fragmen arang kayu dan batuan (andesit?). Hadir struktur sedimen laminasi sejajar dan silang-siur palung skala besar terutama di bagian atas dari Satuan Tuf Maninjau II (Foto 8). Secara setempat dijumpai sisipan tuf pasiran sangat kasar berwarna abu-abu gelap, terdiri dari matrik dan fragmen batuan beku, diameter fragmen mencapai 3 mm , hadir sebagai sisipan discontinue (tidak menerus). Tebal Satuan Tuf Maninjau II mencapai 6 m , di beberapa tempat menipis namun secara keseluruhan sebarannya relatif horizontal.

Foto 5. Fragmen batuan aneka ukuran dan bahan, teritanam dalam masa dasar tuf pasiran (III). Tuf abu-abu terang merupakan endapan piroklastiktertua (terbawah) di daerah penelitian.

Gambar 7. Sketsa toto 5 dimaksudkan untuk memperjelas komponen aneka bahan yang tertanam dalam masa dasar tuf pasiran (Maninjau II), Tuf abu-abu terang merupakan endapan piroklastiktertua (hlerbawah) di daerah penelitian.

Satuan Tuf Maninjau II membentuk 5 undak dengan ciri-ciri mirip seperti pada Satuan Tuf Maninjau I (Gambar 7).

Secara umum baik satuan Tuf Maninjau I maupun II mudah retak. Dijumpai banyak rekahan pada tubuh satuan tuf masif menunjukkan sebagai salah satu faktor terbentuknya ngarai atau lembah yang baru (Foto 9). Rekahan-rekahan tersebut berarah sejajar dan tegak lurus arah tebing ngarai. Debris slope (lereng robakan) dan cone (kerucut rombakan) dari tuf banyak dijumpai di sepanjang tebing ngarai, dengan demensi dan ukuran yang beragam (Foto 10).

Foto 6 dan 7 Singkapan didinding Ngarai Sianok memperjelas hubungan antara tuf Maninjau I (bawah) dan tuf Maninjau II (atas), diselangi oleh serangkaian endapan sungai dengan struktur kerukan (scour) yang menunjukkan jejak alut sungai tua, ditunjukkan adanya struktur silang-siur dan laminmasi sejajar, tebal endapan sungai 75 cm 150 cm . Lokasi: Ngarai Sianok, Kelurahan Belakang balok. No. Iokasi : 25 m sebelah timur titikamat P1. Arah kamera: ke Timur

Foto 8 Bagian bawah Satuan Tut Maninjau Il di daerah penelitian selalu di alasi oleh endapan fluviatil, yang diikuti di atasnya oleh silang-siur tuf dan laminasi sejajar. Kelebalan endapan fluviatil beragam dari titik amat satu dengan yang lainnya, dan terlihat menerus, kecuali bila terjadi pensesaran. Disamping ifuditunjukkan foto rinci darijejak alur sungai tua.

Foto 10 (a, b). Screetan, scree slope maupun debris slope sangat umum terjadi di tebing timur Ngarai Sianok, Lokasi : Sp1 (foto 10a) dan SP2 (ioto 10b).

DISKUSI

Banyak ahli mengatakan bahwa sesar sumatera merupakan sesar tua yang aktif kembali. Tjia (1977) mengatakan bahwa baru-baru ini (resen) terjadi pergeseran alur sungai pada depresi Singkarak-Solok dengan besar pergeseran 450 m menganan (dextral) dan sebagian bergeser m mengkiri (sinistral) 550 . Di lain tempat di sepanjang zona sesar pergeseran alur sungai mencapai 800 m menganan (dextral) dan 1200 m mengiri (sinistral).
Menurut Tjia (1977) dan Katili (1967) bahwa sesar Sumatera terdiri dari 18 segmen, salah sat segmensegmen tersebut adalah segmen Sianok dimana daerah penelitian masuk di dalam zona tersebut. Secara geomorfologi segmen tersebut diekspresikan sebagai graben sempit dan ditutupi oleh ignimbrit. Jika segmen sesar Singkarak-Solok saat ini dinyatakan aktif, tidak menutup kemungkinan terjadi reaktifasi sesar Sianok yang menggerakan endapan ignimbrit di daerah penelitian (Ngarai Sianok Belakangbalok). Poedjoprajitno (2007) menerangkan bahwa segmen-segmen sesar Sumatera di daerah Padangpanjang memberikan indikasi sesar aktif, yang ditunjukkan oleh beberapa bukti terpotongnya endapan vulkanik Kuarter di Kotobaru dan Pandaisikek. Beberapa bukti lapangan menunjukkan bahwa endapan sungai (sebagai lapisan penunjuk) yang memisahkan antara satuan Maninjau I dan II tersesarkan membentuk beberapa bentuklahan undak (terraces), demikian juga yang terjadi pada Satuan Maninjau II.

Berdasarkan atas data lapangan, terbentuknya undak Ngarai Sianok di daerah penelitian dapat diterangkan sebagai berikut; Setelah perioda pengendapan Satuan Tuf Ignimbrit Maninjau I (bawah), segera disusul aktivitas fluvial di permukaanya menghasilkan endapan fluvio vulkanik berupa pasir kerikilan dan konglomerat aneka bahan. Selama proses pengendapan fluvio vulkanik berjalan, terjadi aktifasi sesar Sumatera yang menyebabkan tumpukan tuf ignimbrit Maninjau I ikut tersesarkan (Foto 11) di tiga tempat dan membentuk 3 undak. Keadaan ini membuat alur sungai berpindah mengikuti arah penurunan dari bagian blok sesar yang paling rendah. Kondisi ini berlangsung lama yang kemudian diikuti proses pengendapan tuf ignimbrit Maninjau II (atas), dan diakhiri oleh proses
fluvio vulkanik II seperti yang terjadi pada perioda I. Selama kurun waktu pengendapan fluvio vulkanik II terjadi reaktifasi sesar Sumatera di daerah penelitian mengakibatkan tersesarnya tumpukan tuf ignimbrit, dan membentuk 5 undak. Kelihatannya proses pembentukan undak masih terus berlangsung sampai sekarang, dengan beberapa bukti ditemukan endapan-endapan fluviatil muda (Foto 12) yang diperkirakan sebagai undak termuda di kawasan ini.

Berpindahnya alur Sungai Sianok bukan karena pengaruh pergantian musim semata, melainkan peran tektonik sangat kuat. Hal ini dapat dibuktikan oleh beberapa sesar normal yang memotong Satuan endapan Tuf Ignimbrit. Ekspresi morfologi sesar normal tersebut dicerminkan oleh delapan endapan undak yang terbentuknya saling berkesinambungan. Kronologi terbentuknya undak adalah sebagai berikut: ketika terjadi reaktifasi sesar basemen, Satuan Tuf Ignimbrit yang menutupi basemen terkoyak dan tersesarkan membentuk lembah graben. Selanjutnya dasar lembah dianggap sebagai awal pembentukan undak ke 1 (undak tua), disinilah awal Sungai Sianok bermula dan membentuk alur sungai mengalir mengikuti kemiringan dasar lembah sesar normal (graben). Berikutnya gerak-gerak sesar basemen rupanya secara berkala aktif, terjadi perulangan peristiwa pensesaran melibatkan Satuan Tuf Ignimbrit membentuk lembah graben berikutnya dan dasar lembah graben merupakan awal terbentuknya undak 2. Sesuai hukum alam aliran Sungai Sianok selalu mencari tempat terendah dan kemudian alur sungai tersebut berpindah dari dasar undak 1 ke dasar undak 2. Peristiwa ini berulang kembali hingga saat ini, dibuktikan oleh runtunan delapan morfologi undak dalam komplek lembah graben yang sangat lebar dan dikenal sebagai Ngarai Sianok.

KESIMPULAN

- Secara Morfostratigrafi Tuf Ignimbrit (Plato Tuf Ignimbrit Maninjau) di Ngarai Sianok berumur Kuarter, yang diperkirakan berasal dari hasil kegiatan G. Maninjau. Tuf tersebut terdiri dari dua satuan, yaitu Satuan Tuf Ignimbrit Maninjau I (tua) dan Satuan Tuf Ignimbrit Maninjau II (muda), masing-masing setebal 3 dan 5 meter. Kedua satuan tersebut dipisahkan oleh endapan fluviovolkanik setebal 1-3 meter, yang menunjukkan bahwa telah terjadi dua (2) kali letusan aktifitas vulkanisme Gunung Maninjau.

Foto 11. Sesar normal mikro (bersitat lokal) terjadi di sepanjang dinding barat Ngarai Slanok yang segera dilkuti oleh proses pengendapan alur sungai purba. Sesar normal mikro ituterjadi selama proses fluvio vulkanik sedang berlangsung dan saat itu pula terjadi aktivasi sesar yang menyebabkan Satuan Tuflgnimbrit Maninjau Idi lokasi ini ikut tersesarkan membentuk undak (T7).

Foto 12. Singkapannusa (point bar) yang membentukundak (TB) merupakan kenampakan morfologi bentukan termuda saat ini, diperkirakan hasil kegiatan fivvio tectono volcanic. Inset menunjukkan struktur dalam dari sebuah nusa (point bar), dimana foreset laminae bersudut 30°. Lokasi : P1 alur Sungai Sianok.

- Gerak-gerak tektonik ditandai dengan munculnya undak di kedua satuan batuan itu, yang masingmasing 3 undak di Tuf Ignimbrit Maninjau I dan 5 undak pada Tuf Ignimbrit II, Gerak-gerak tektonik ini diperkirakan pengaruh reaktivasi Sesar Sumatera, yang di lajur Bukit Barisan Sumatera Barat ditandai dengan munculnya horst dan graben.
- Sungai Sianok terjadi akibat gerak-gerak tektonik Kuarter akibat reaktivasi Sesar Sumatera yang dipercepat dengan pengikisan secara tegak dan ke samping oleh aliran permukaan sungai.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada Kepala Pusat Survei Geologi yang telah mengizinkan penulis untuk mempublikasikan makalah ini.

ACUAN

Bemelen, R.W. van, (1949). The Geologi of Indonesia, V. IA General Geology, The hague, Martinus Nijhof.
Kastowo, Gehard.W. L, Gafoer. S. dan Amin T.C, 1997. Peta Geologi Lembar Padang, Sumatera, skala 1:250.000, Puslitbang Geologi, Bandung.
Katili, J.A. dan Hehuwat. F., 1967. On the Occurrence of Large Trancurrent Faults in Sumatra, Indonesia, Jur. Geosciences, Vol.10, Art. 1-1, Osaka.
Poedjoprajitno S., 2007. Morfotektonik dan reaktivitas sesar Sumatera di Padangpanjang, Sumatera Barat, Jurnal Sumber Daya Geologi VoI. XVII, No. 3, Bandung.
Selby, M.J, 1985. Earth changing surface, Oford University Press.
Tjia, H. D. 1977. Tectonic depression along the transcurrent Sumatera fault zone, Geol. Indonesia, J 4. 1:1327.

Verstappen, H. Th., 1973. A geomorphological reconnaissance of Soematra and adjacent island (Indonesia), ITC, The Netherlands, 182 p .
Verstappen, H Th. 2000. Outline of the Geomorphology of Indonesia. A case study on tropical geomorphology of a tectogene region, ITC-Division of Applied Geomorphological Survey (AGS), The Netherlands, 212 p.
Westerfeld, 1953. Eruptions of acid pumice tuffs and related phenomena along the great Sumatern fault-trough system: Pasific Sci. Cong., $7^{\text {th }}$, New Zealand, 1949, Proc. 2: 411-438.

Naskah diterima : 19 Mei 2006
Revisi terakhir : 10 Juni 2008

