# STRUKTUR BAWAH PERMUKAAN DAERAH SEMARANG DAN SEKITARNYA DARI METODE GAYA BERAT DAN MAGNET 

D.A. Nainggolan<br>Pusat Survei Geologi<br>JI. Diponegoro No. 57, Bandung 40122


#### Abstract

SARI Hasil pengukuran gaya berat di daerah penelitian, yang sebagian besar daerahnya ditutupi oleh batuan vulkanik, mempunyai besaran anomali antara - 13 sampai 44 mgal . Perkembangan tektonik dan geologi daerah penelitian kemungkinan masih aktif sampai saat ini. Sehubungan dengan hal ini, Pusat Survei Geologi (PSG) melakukan penelitian gaya berat semi terperinci untuk melihat kemungkinan ini secara lebih seksama. Endapan hidrokarbon yang berada di daerah Cipluk, selatan Kendal, pernah di eksploitasi oleh Pemerintah Belanda, dan ditutup sekitar tahun 1930-an. Dari fakta ini, tempat-tempat lain di bagian utara daerah penelitian masih diduga berpotensi memiliki cebakan hidrokarbon. Daerah selatan Gunung Ungaran bisa berpotensi mengandung sumber daya geologi panas bumi (geotherma/). Penafsiran anomali Bouguer dan magnet total yang menghasilkan bentuk geometri model-model penampang bawah permukaan, termasuk struktur geologinya, mencerminkan proses geologi dan tektonik, serta kaitannya dengan potensi sumber daya geologi. Hasil analisis kualitatif anomali Bouguer dan anomali sisa menunjukkan bahwa struktur yang berkembang di daerah penelitian pada umumnya berarah barat - timur dan utara - selatan.


Kata kunci : gaya berat, magnet, anomali Bouguer anomali, struklur, Semarang


#### Abstract

The result of gravity measurements in the studied area, which is mainly covered by volcanic rocks, have an anomaly value ranging from -13 to 44 mgal . Geologic and tectonical development of the area may still be active until recently (?). For this reason, The Geological Survey Institute conducted detailed gravity study to delineate this possibility more accurately. The hydrocarbon reserve had ever been exploitated by the Dutch Government from the Cipluk field, southern of Kendal city and already been closed in 1930. From this fact, other areas in the northen part of this Quadrangle is potential for the hydrocarbon resource. The southern part of Ungaran Mountain may also potensial for the geothermal resource. The qualitative analysis of the anomaly patterns, subsurface profile models including the geological structures reflects the geological processes, tectonics and its relationship with natural resources. The qualitative analysis on residual and Bouguer anomalies indicates that the structures in the study area have mainly east -


 west and north - south directions.Keywords: gravity, magnet, Bouguer anomaly, structures, Semarang

## PENDAHULUAN

Informasi gaya berat (gravity) banyak digunakan dalam bidang geofisika dan geodesi. Dalam bidang geofisika, informasi spasial gaya berat dipakai sebagai salah satu cara untuk memprediksi struktur geologi dan densitas batuan penyusun kerak bumi.

Data anomali Bouguer merupakan salah satu data dasar kebumian yang diperlukan untuk perencanaan pembangunan, eksplorasi energi dan sumber daya mineral, serta keperluan penelitian ilmiah kebumian.

Beberapa tahun belakangan ini banyak penelitian yang dilakukan di daerah Kota Semarang, antara lain oleh Budiono, (1996), Tobing drr., (2000), Lumban Batu, (2004), Irham drr., (2004) dan Supriyadi drr, (2005). Kelompok Irham dan Supriyadi melakukan penelitian dengan metode Gravitasi Mikro. Mereka berkesimpulan bahwa ada penurunan permukaan tanah Kota Semarang sebesar 12 sampai 40 cm per tahun.


Gambar 1. Peta lokasi daerah penelitian.

Berdasarkan peta Anomali Bouguer Lembar Semarang, skala $1: 100.000$ (Sani drr, 1997) terdapat beberapa pola anomali yang menunjukkan adanya struktur-struktur sesar. Untuk mengetahui sebaran struktur sesar tersebut, perlu dilakukan penelitian gaya berat lebih rinci. Informasi seperti ini penting artinya dalam evaluasi geologi teknik dan kebencanaan di daerah penelitian. Di samping data gaya berat semi rinci hasil penelitian ini, data magnet udara dari basis data Kelompok Geofisika, Pusat Survei Geologi, juga di analisis.
Dalam makalah ini, penulis membahas dan menganalisis anomali Bouguer secara kualitatif dan kuantitatif untuk mempelajari aspek-aspek geologi, seperti jenis batuan dasar, rapat massa batuan dasar dan struktur yang berkembang di daerah penelitian dan kaitannya dengan kemungkinan potensi sumber daya alam yang terdapat di sana.

Anomali magnet Total juga di analisis secara kualitatif untuk melengkapi hasil-hasil interpretasi (yang datanya diambil dari basis data yang ada di komputer kelompok Geofisika, Program Pemetaan dan Penelitian Dasar, Pusat Survei Geologi Bandung). Data magnet tersebut merupakan data magnet udara (airborne magnetic).

## Lokasi dan Kondisi Daerah Penelitian

Secara administratif, daerah penelitian terletak di Kota Semarang, Kabupaten Ungaran dan Kabupaten Kendal (Propinsi Jawa Tengah). Secara geografis, lokasi tersebut terletak dalam koordinat $110^{\circ} 00^{\prime}$ $110^{\circ} 30^{\prime}$ BT dan $06^{\circ} 50^{\prime}-07^{\circ} 20^{\prime}$ LS.

Secara umum, lokasi penelitian terletak di sekitar pantai utara Jawa bagian Tengah, maka untuk menuju ke lokasi tersebut dapat ditempuh dengan mudah menggunakan transportasi darat. Waktu yang diperlukan untuk dapat mencapai daerah tersebut adalah sekitar 9 10 jam dari Pusat Survei Geologi di Bandung.
Sebagian besar daerah penelitian merupakan wilayah yang terbuka, dan diusahakan untuk pertanian, sedangkan daerah sekitar puncak gunung masih tertutup oleh hutan.

## TATAAN GEOLOGI

## Fisiografi dan morfologi

Daerah penelitian dapat digolongkan kedalam tiga satuan morfologi (Gambar 2), yaitu dataran rendah, pebukitan, dan daerah pegunungan (Thanden drr., 1996).

Daerah dataran rendah menempati bagian utara peta Lembar Semarang, memanjang pada arah barat timur, dan mempunyai lebar yang sempit antara tiga Sampai sepuluh kilometer dengan arah utara selatan di Gajah Mungkur yang tingginya berkisar dari 100 - 900 meter dari permukaan laut. Pengaliran di daerah ini berpola hampir sejajar dan lembahnya berlereng agak terjal. Di beberapa tempat terdapat tonjolan yang menyolok berupa korok gunung api.

Daerah pegunungan merupakan Kelompok Gajah Mungkur, menempati bagian selatan dan tengah lembar yang dicirikan oleh beberapa kerucut puncak gunung, seperti Gunung Ungaran, Gunung Gajah Mungkur, Gunung Kaligesik, dan lain-lain dengan titik tertinggi $\pm 1778$ meter di atas permukaan laut. Kemungkinan kelompok gunung api ini mulanya merupakan suatu puncak gunung yang kemudian sesudah meletus, kalderanya berkembang membentuk beberapa puncak. Sungai di lereng bagian atas mempunyai kelandaian besar dengan lembah yang sempit, dan pola alirannya bersifat memancar.


## STRATIGRAFI

Tataan stratigrafi di daerah penelitian (Thanden drr., 1996) berupa batuan sedimen, gunung api, dan batuan terobosan yang berumur mulai dari Miosen Akhir hingga Holosen.

Formasi Kerek merupakan satuan tertua yang terdapat di daerah penelitian berumur Miosen Tengah, terdiri atas perselingan antara batu lempung, napal, batupasir tufan, konglomerat, breksi vulkanik, dan batugamping. Berikutnya adalah Formasi Kalibeng yang terdiri atas napal pejal, napal berselingan batupasir tufan, dan bintal batugamping yang umurnya diperkirakan Miosen Akhir sampai

Pliosen. Formasi Kaligetas terdiri atas breksi vulkanik, aliran lava, tuf, batupasir tufan, dan batulempung. Formasi Damar terdiri atas batupasir tufan, konglomerat, dan breksi vulkanik.

Batuan terobosan yang terdapat di lokasi penelitian ini bersusunan andesit hingga basal. Diduga telah tiga kali terjadi penerobosan yang berlainan waktunya. Terobosan tertua terjadi di bagian selatan Lembar, dan makin ke utara umur terobosan makin muda.

Endapan aluvium yang terdiri atas endapan sungai dan pantai serta danau tersebar di bagian utara Lembar.


Gambar 3. Peta Geologi Daerah Semarang dan sekitarrya (Thanden drr., 1996).

## Struktur dan Tektonik

Kegiatan tektonik di daerah ini diawali pada masa Tersier Awal yang ditandai oleh intrusi basal dan andesit, kemudian diikuti oleh pengangkatan dan erosi. Hasil erosi ini membentuk sedimen turbidit Formasi Kerek di lingkungan neritik, yang selanjutnya diikuti oleh pengendapan Formasi Kalibeng di lingkungan laut dalam dan pengisian cekungan Formasi Damar dilingkungan transisi sampai batial.

Selanjutnya, kegiatan tektonik Plio-Plistosen mengaktifkan kembali hasil pencenanggaan Tersier Awal dan membentuk lipatan-lipatan tak setangkup yang diikuti oleh sesar naik berarah relatif barat timur, sesar geser yang berarah timur laut - barat daya dan barat laut - tenggara, dan sesar normal. Rekahan-rekahan yang terjadi berupa bidang lemah tempat batuan gunung api Kuarter. Muda ke permukaan.

## Sumber Daya Geologi

Sumber daya geologi di lembar ini terdiri atas pasir, lanau, lempung, batugamping, bongkah-bongkah andesit, dan perlit. Bongkah-bongkah andesit dan pasir hasil endapan sungai di Kali Tuntang dapat digunakan untuk bahan bangunan atau fondasi jalan, sedangkan lanau dan lempung untuk bahan industri batubara. Perlit yang dijumpai di Gunung Blabak di barat daya Ambarawa mengandung kadar silika antara 40\%-64\%.

Hidrokarbon pernah dieksploitasi dari daerah penelitian ini oleh Pemerintah Belanda, yaitu dari Lapangan minyak Cipluk, sebelah selatan kota Kendal, yang posisi tepatnya pada koordinat $110^{\circ} 07^{\prime}$ BT dan $07^{\circ} 03^{\prime}$ LS. Eksploitasi ini berlangsung selama 35 tahun, dan ditutup sekitar tahun 1930an.

## Pengukuran Gaya Berat

Titik ikat atau titik acuan pengukuran adalah titik yang digunakan untuk melakukan pengikatan nilai pengukuran pada titik awal (titik dasar atau titik basis), sehingga titik-titik lainnya yang diukur relatif terhadap titik awal tersebut akan mempunyai nilai yang diperlukan. Dalam hal ini titik ikat tersebut dapat berupa titik pangkal gaya berat dan titik kontrol topografi (titik triangulasi, titik gps, titik TTG).
Titik acuan pengukuran yang digunakan dalam survei gaya berat Semarang ini adalah:

## - Titik GPS (Global Positioning System)

- Titik TTG (Tanda Tinggi Geodesi)

Titik TTG di atas, selain memiliki nilai ketinggian ortometrik (ketinggian di atas permukaan laut ratarata), juga mempunyai nilai gaya berat pengamatan (Go), sehingga dapat dijadikan acuan untuk menentukan nilai gaya berat di titik lainnya. Jadi titik TTG ini berfungsi sebagai titik acuan untuk menentukan ketinggian dan nilai gaya berat pada titik ukur. Sementara titik GPS digunakan sebagai titik awal koordinat untuk penentuan posisi titik ukur gaya berat.

Pengukuran gaya berat semi rinci ini dilakukan di daerah Lembar Semarang pada skala 1:50.000 (Gambar 5). Pengamatan gaya berat dilakukan menggunakan alat ukur gravimeter La Coste \& Romberg jenis geodetik, G.813. Jalur pengukuran dibuat membentuk jejaring tertutup, artinya pengukuran dimulai dan diakhiri pada titik pangkal gaya berat yang sama. Sebagai titik awal pengukuran (base station, BS) adalah titik BS yang terletak di sebelah kiri pintu masuk Hotel Puri Indrakila, Ungaran. Sebagai titik acuan pengukuran digunakan titik acuan gaya berat No. 7793.0277 yang terletak di R.S. St. Elizabeth, Semarang (Adkins drr., 1978). Sebagai data kontrol, pengukuran diikatkan juga terhadap titik pangkal gaya berat DG.0, yang terletak di Museum Geologl Bandung. Semua nilai gaya berat pada titik acuan tersebut sudah terikat pada Jaringan Gaya Berat Baku Internasional (Adkins drr., 1978).

Tabel 1. DaftarKoordinat dan Nila Gaya Berat

| Trik Acuan Gaya Berat | tang | Buour | Tinges (m) | Nilai Geya Berat (mgal) |
| :---: | :---: | :---: | :---: | :---: |
| 7793.0277 | 0760100\%s | $110^{\circ} 34^{\prime} 00{ }^{\prime \prime}$ | 120.000 | 978100.090 |
| RS.ST. Elizabet |  |  |  |  |
| DG 0 | 06*54'03'S | 107-3718'T | 727.532 | 977976.398 |
| BS | 07\%0808'S | $110^{2} 23.57 \mathrm{~T}$ | 319.100 | 978111.439 |

Pengukuran gaya berat semi rinci dilakukan dengan memotong pola struktur (yang berarah barat timur) secara tegak lurus. Interval jarak pengukuran antar titik pada setiap lintasan jalan raya tersebut kurang lebih sekitar 500-1000 meter (Gambar 4). Pengolahan data sementara dilakukan di lapangan, sehingga pola anomali Bouguer sederhana dapat digambarkan dengan segera. Anomali Bouguer

## Geo-resources

sederhana ini diperoleh dengan memberikan koreksi pasang-surut, koreksi apungan alat, serta koreksi gabungan (combined correction). Dengan demikian, bila terdapat kejanggalan bentuk/pola anomali, dapat segera dicek ke lapangan untuk kemudian dilakukan pengukuran ulang. Data gaya berat direduksi menggunakan rapat massa rata-rata batuan sebesar $2,67, \mathrm{gr} / \mathrm{cm}^{3}$, gaya berat normal dihitung dengan acuan elipsoid GRS (Geodetic Reference System) 1967.

Untuk mendapatkan anomali Bouguer lengkap, pengolahan data dilanjutkan di Bandung (Kantor Pusat Survei Geologi) dengan menerapkan koreksi medan. Proses ini memerlukan waktu yang lama, serta ketelitian dan ketekunan personel yang tinggi, dan dikerjakan di kantor.

Secara lengkap, nilai anomali Bouguer dihitung menggunakan formula berikut ini :

$$
A B=G_{0} \cdot G_{n}+K G+K M
$$

## Keterangan :

```
AB = Anomali Bouguer
G}=\mathrm{ Nilai gaya berat pengamatan yang telah telah terkoreksi
\(\mathrm{G}_{\mathrm{n}}=\) Gaya berat normal yang beracuan kepada elipsoid GRS 1967 (Dobrin and Savit 1988).
\(K G=\) Koreksi gabungan
\(\mathrm{KM}=\) Koreksi Medan
```

Langkah selanjutnya adalah pemetaan anomali Bouguer menggunakan peta dasar rupa bumi skala 1: 50.000. Penggambaran kontur dilakukan dengan perangkat lunak komputer Surfer versi 8.

## Pengukuran Topografi

Selain data gaya berat, untuk dapat memperoleh besaran anomali Bouguer perlu pula diukur data topografi. Data termaksud adalah data koordinat (lintang L, bujur B) dan ketinggian (h) titik pengamatan relatif terhadap permukaan laut ratarata.


Gambar 4. Peta penyebaran titik pengamatan gaya berat daerah Semarang dan sekitarnya.

Berbeda dengan pengukuran gaya berat yang dapat dilakukan secara mudah dan cepat, pengukuran topografi memerlukan tenaga personel yang besar, waktu yang lama, dan biaya yang mahal. Untuk dapat menghemat semua itu, maka pengukuran topografi dilakukan menggunakan metode global positioning system (gps) diferensial yang dapat dikerjakan secara mudah, cepat, dan relatif lebih murah biayanya. Metode pengukuran ini dapat menghasilkan data posisi dan ketinggian yang cukup tinggi ketelitiannya ( $\leq 10 \mathrm{~cm}$ ) (Leick, 1989).

## Pengambilan Percontoh Batuan

Percontoh batuan diambil dari singkapan di daerah penelitian untuk dihitung rapat massa batuannya. Data rapat massa batuan ini diperlukan untuk proses penafsiran kuantitatif pola anomali Bouguer dalam menentukan struktur geologi bawah permukaan. Percontoh batuan yang diambil harus dapat mewakili batuan di daerah tersebut, harus benar-benar segar, dan mempunyai ukuran yang cukup untuk pemeriksaan laboratorium. Tetapi dalam prakteknya hal ini sulit dilakukan karena keterbatasan waktu dan peralatan yang digunakan.
Pekerjaan ini dilakukan secara bersamaan dengan pekerjaan lapangan lainnya (pengukuran gaya berat maupun pengukuran topografi). Selain percontoh batuan, foto lokasi batuan dan foto lokasi struktur geologi yang tersingkap di lapangan juga diperlukan untuk diambil, sehingga dapat memberikan gambaran nyata tentang keadaan lapangan. Sebanyak delapan buah percontoh batuan yang diambil dari lapangan, dan hasil analisis laboratorium seperti tercantum pada Table 2 di bawah ini.

## Pengolahan Data

Pengolahan data dikerjakan secara bertahap, yaitu untuk pengolahan data sementara dikerjakan di lapangan, sedangkan pengolahan data lengkap dikerjakan di kantor, termasuk pekerjaan laboratorium.

Pengolahan data sementara adalah melakukan perhitungan anomali sederhana, yaitu hitungan anomali Bouguer tanpa memberikan koreksi medan. Semua pekerjaan ini dikerjakan di lapangan, sehingga anomali sederhana dapat langsung digambarkan. Dengan demikian, bila terdapat kesalahan pengukuran, dapat langsung diketahui di lapangan untuk kemudian dilakukan pengukuran ulang di tempat tersebut. Sementara untuk pengolahan data lengkap dikerjakan di kantor, yaitu mencakup pekerjaan hitungan koreksi medan, hitungan anomali Bouguer lengkap, penggambaran kontur, dan penafsiran pola anomali, baik secara kualitatif maupun kuantitatif.

Khusus untuk pekerjaan laboratorium, yaitu penentuan rapat massa batuan, dikerjakan di laboratorium geofisika yang terletak di Jalan Terusan Pasteur Bandung. Semua percontoh batuan yang diambil di lapangan diukur sifat-sifat fisika batuannya, seperti: rapat massa batuan (keperluan penafsiran kuantitatif), kerentanan magnet, dan cepat rambat gelombangnya (data tersebut kemudian digunakan untuk bahan pertimbangan dalam penentuan sifat fisika yang akan digunakan dalam penelitian geofisika selanjutnya).

Tabel 2. Hasil Analisis Laboratorium

| No. | No. Kode | Nama Batuan | Keordinat |  | Rapat massa |  |  | Cepat Rambat |  | Kerentanan <br> Magnet (SI) | Keterangan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Bujur | Lintang | Natural Grice | Basah Grice | Kering Grice | $\begin{gathered} \mathrm{V}_{\mathrm{p}} \\ \text { (m/detik) } \end{gathered}$ | $\begin{gathered} \text { Vs } \\ \text { (m/detik) } \end{gathered}$ |  |  |
| 1. | DA -40 | Andesit | $110,19308^{\circ}$ | $7,19300^{\circ} \mathrm{LS}$ | 2,88 | 2,92 | 2,76 | 2500 | 2247 | $2617 \times 10^{-6}$ | - |
| 2. | DA - 60 | Andesit | $110,35125^{\circ}$ | $7,12147^{\circ} \mathrm{LS}$ | 2,70 | 2.72 | 2,67 | 3333 | 2778 | $3204 \times 10^{6}$ | Lapak |
| 3. | DA - 62 | Basal | 110,32933* | 7, $12473^{\circ} \mathrm{LS}$ | 2,60 | 2,63 | 2.53 | 3636 | 3077 | $3092 \times 10^{-6}$ | Lapuk |
| 4. | DA - 81.1 | Andesit | 110,18403* | 7.07972 ${ }^{\circ} \mathrm{LS}$ | 2.68 | 2,69 | 2,62 | 3333 | 2899 | $3050 \times 10^{6}$ | Sangat lapuk |
| 5. | DA-81.2 | Andesit | 110,18403 ${ }^{\circ}$ | 7,07972 LS | 2.63 | 2.65 | 2,58 | 3571 | 3077 | $2767 \times 10^{6}{ }^{7}$ | Sangat lapuk |
| 6. | DA-106. 1 | Basal | 110,07081* | 7,03053* LS | 2,49 | 2.52 | 2,43 | 3175 | 2778 | $1820 \times 10^{-6}$ | $\begin{array}{\|l\|} \hline \text { Sangat } \\ \text { lapuk } \\ \hline \end{array}$ |
| 7. | DA-106.2 | Basal | 110,07081 ${ }^{\circ}$ | $7.03053^{\circ} \mathrm{LS}$ | 2,33 | 2.36 | 2,30 | 1923 | 1802 | $1291 \times 10^{6}$ | $\begin{aligned} & \text { Sangat } \\ & \text { lapuk } \end{aligned}$ |
| 8. | DA-100 | Basal | 110,39028 ${ }^{\circ}$ | 7,04633 ${ }^{\circ} \mathrm{LS}$ | 2,58 | 2,63 | 2,54 | 2564 | 2247 | $2360 \times 10^{6}$ | $\begin{array}{\|l\|} \hline \begin{array}{l} \text { Singat } \\ \text { lapuk } \end{array} \\ \hline \end{array}$ |

## HASIL DAN PEMBAHASAN

Hasil penelitian ini adalah berupa anomali Bouguer daerah Semarang dan sekitarnya, yang di gabungkan dengan data lama yang sudah dimutakhirkan di beberapa tempat dan disajikan dalam bentuk peta anomali Bouguer dengan skala 1:100.000 (Gambar 5). Peta anomali Bouguer ini mempunyai nilai anomali berkisar antarà - 13 sampai 43 mgal , dengan pola umum berbentuk melingkar bernilai negatif dan positif, dengan sebaran acak di beberapa tempat.

Pola-pola anomali tersebut memberikan gambaran bahwa struktur geologi bawah permukaan yang terdapat di lokasi penelitian ini berupa struktur lipatan. Pola anomali melingkar bernilai +43 mgal terdapat di daerah selatan Lembar ditempati oleh batuan terobosan Tersier (batuan andesit), sedangkan pola anomali melingkar dengan nilai -11 mgal terdapat di sekitar Kecamatan Boja ditempati oleh batuan gunung api (tuf, breksi, dan batupasir tufan).

## ANALISIS KUALITATIF

## Anomali Bouguer

Anomali Bouguer didapatkan dengan menyusutkan data gaya berat lapangan terhadap gaya berat normal berdasarkan rumus (GRS 1967) dengan beberapa koreksi (koreksi Bouguer, koreksi medan). Tolok rapat massa yang digunakan dalam penyusutan data adalah rapat massa kerak rata-rata $2,67 \mathrm{gr} / \mathrm{cm}^{-3}$. Anomali Bouguer di daerah penelitian mempunyai kurun nilai dari -11 mgal sampai +43 mgal . Secara umum, daerah penelitian bisa di bagi menjadi dua bagian :

Daerah anomali tinggi menempati bagian timur daerah penelitian yang dimulai dari gunung api tua (Merbabu) di selatan menerus ke utara melalui Kelompok Gunung Ungaran sampai ke kota Semarang dan bagian barat daya lembar (Gunung Sundoro). Jalur anomali tinggi ini disebabkan oleh suatu massa batuan yang mempunyai rapat massa yang lebih besar ( $>2,67 \mathrm{gr} / \mathrm{cm}^{3}$ ), yaitu batuan andesitik (Thanden drr., 1996).


Gambar 5. Peta anomali Bouguer daerah Semarang dan sekitarnya.

Daerah anomali rendah menempati daerah antara Gunung Merbabu dan Gunung Sundoro (Temanggung) di selatan menerus ke utara melálui Boja dan terus sampai kota Kendal dan pantai utara.

## Anomali sisa

Anomali sisa diperoleh dengan menerapkan trend surface analysis pada data terkisi. Anomali sisa ini diperlukan untuk mengetahui dan memperjelas keberadaan struktur-struktur dangkal (shallow effect). Pada daerah penelitian anomali sisa mempunyai kurun nilai dari -16 sampai dengan +21 mgal , dengan pola kelurusan kontur anomali berarah barat daya - timur laut, utara - selatan, dan barat timur (Gambar 6). Penampakan anomali sisa ini menunjukkan bahwa keberadaan gunung api tua (Merbabu) kelompok Gunung Ungaran dan bagian timur Semarang tidak menerus seperti yang terlihat dari anomali Bouguer pada kedalaman yang dangkal. Demikian juga kelompok Gunung Sundoro yang pada
anomali Bouguer menunjukkan kelompok anomali tinggi, tetapi pada anomali sisa ini hanya pada bagian utaranya yang memberikan anomali tinggi. Secara umum, pola anomali sisa ini menunjukkan pola struktur sinklin dan antiklin secara bergantian dari arah utara - selatan dengan arah pola struktur hampir barat daya - timur laut dan barat - timur (Gambar 6). Ada tiga buah rangkaian anomali negatif pada daerah penelitian ini, yaitu :

1. Rangkaian yang terdapat di pantai utara, di mulai dari utara Weleri menerus ke timur.
2. Rangkaian yang mempunyai arah hampir barat timur yang dimulai dari Sukorejo sampai Mijen, dan menerus ke timur sampai selatan Semarang.
3. Rangkaian yang mempunyai arah hampir barat daya - timur laut, mulai dari daerah Temang gung sampai selatan Ungaran, dan masih menerus ke daerah Lembar di sebelah timur (Lembar Salatiga).


Gambar 6. Peta anomali sisa daerah Semarang dan sekilarnya.

## Geo-resources

Anomali negatif yang menarik disini adalah anomali yang terdapat di selatan Gunung Ungaran, karena diduga sebagai gambaran suatu cekungan yang bisa berpotensi mengandung cebakan panas bumi yang terindikasi dengan terdapatnya sumber air panas di sana (Thanden drr., 1996). Air panas tersebut keluar melalui suatu patahan dengan arah hampir timur barat.

Struktur antiklin di daerah penelitian seperti halnya struktur sinklin juga terdiri atas tiga rangkaian, yang tentunya searah dengan struktur sinklin. Dalam rangkaian-rangkaian struktur antiklin maupun sinklin tersebut masih terdapat juga struktur sinklin/antiklin dengan skala yang lebih kecil yang tentunya dihasilkan oleh tektonik yang berkembang kemudian di daerah tersebut. Rangkaian antiklin yang menaŗik di daerah ini adalah rangkaian antiklin yang terdapat di bagian utara lembar, karena bisa berpotensi menjadi cebakan perangkap hidrokarbon. Dari data geologi, daerah ini ditempati oleh batuan dari

Formasi Kerek yang merupakan batuan tertua di daerah penelitian (Thanden drr., 1996). Formasi Kerek tersebut termasuk kedalam cekungan yang melewati Mijen dengan arah timur - barat yang menurut Widianto, (2008) merupakan batuan yang menghasilkan endapan hidrokarbon dan berimigrasi ke arah utara. Dari daerah ini endapan hidrokarbon sudah pernah dieksploitasi pada jaman penjajahan Belanda.

## Anomali Regional

Anomali Bouguer Regional ini dihasilkan melalui pengurangan anomali Bouguer terhadap anomali sisa. Berdasarkan penampakan anomali regional (Gambar 7), permukaan batuan dasar tidak mempunyai topografi yang rata, atau dengan kata lain ada beda permukaan batuan dasar antara jalur akrasi dengan jalur cekungan busur muka. Secara umum, anomali regional ini mempunyai pola kontur dengan arah barat laut - tenggara.


Gambar 7. Peta anomali regional daerah Semarang dan sekitarnya.

## ANALISA KUANTITATIF

Dalam makalah ini, empat buah penampang anomali Bouguer dan empat buah penampang anomali sisa dibuatkan model penampang geologinya. Untuk pemodelan, semua informasi geologi seperti keberadaan struktur, kedalaman struktur, dan lain lain harus digunakan untuk mengurangi sifat ketidakunikan analisis kuantitatif ini, sehingga hasil yang didapat lebih mendekati keadaan yang sebenarnya. Dari keempat penampang tersebut, tiga potongan penampang dibuat dengan arah hampir utara - selatan dan satu buah berarah barat - timur (Gambar 4). Hal ini dibuat sedemikian rupa karena dari penampakan pola anomali Bouguer, jurus struktur bawah permukaan yang berkembang di daerah penelitian adalah arah utara - selatan. Hasilhasil pemodelan (Gambar 8,9,10 dan 11) di bawah ini memperlihatkan bahwa batuan sedimen yang mempunyai ketebalan paling tebal terdapat pada model penampang A-A', yaitu sekitar 3000 meter lebih di sekitar daerah Sukowono. Di' utara daerah Boja terdapat juga suatu struktur graben dengan arah barat - timur, yang di hasilkan oleh dua buath sesar. Dari hasil pemodelan ini terlihat juga beberapa struktur - struktur sesar, terutama pada penampang $A A^{\prime}$ yang cenderung berarah barat - timur seperti terlihat pada kilometer $3,8,23,27,33$, dan kilometer 39 (Gambar 8). Pada penampang D-D' yang berarah timur - barat terlihat juga indikasi beberapa struktur sesar yang cenderung mempunyai arah hampir utara - selatan (Gambar 11). Keberadaan massa batuan andesit/basaltik menurut peta geologi (Thanden drr., 1996) merupakan intrusi yang sangat lokal, tetapi menurut hasil pemodelan ini merupakan suatu massa yang cukup besar karena diyakini merupakan penyebab anomali Bouguer tinggi.

Dari hasil-hasil interpretasi kualitatif dan kuantitatif tersebut di atas dihasilkan peta sebaran struktur daerah penelitian seperti pada Gambar 14.

Hasil-hasil pemodelan terhadap tiga buah penampang anomali Bouguer dan anomali sisa, yaitu penampang $A-A^{\prime}$, penampang $B-B^{\prime}$, dan penampang C-C' yang berarah hampir utara - selatan, mengindikasikan bahwa bagian utara adalah bagian yang naik dari suatu sistem sesar yang berarah barat timur (Gambar 7, 8, 9). Dari hal tersebut di atas, secara geologis, daerah Semarang dan sekitarnya adalah bagian yang naik dari sistem sesar tersebut.

Penelitian-penelitian oleh Irham drr. (2004); Supriyadi drr. (2005); Sarkowi drr. (2007),dan Tobing drr. (2000) yang dilakukan di beberapa tempat di sekitar Kota Semarang menunjukkan bahwa ada indikasi penurunan permukaan tanah secara setempat atau amblesan. Menurut Lumban Batu (2004) penyebab penurunan permukaan tanah (amblesan) di Semarang adalah bentuk dan ukuran butiran penyusun batuan sedimen Kuarter tersebut. Hal ini berarti berhubungan dengan porositas dan daya dukung tanah di sana.

Budiono (1996) menyatakan bahwa pesisir pantai mengalami perluasan yang cukup pesat. Hal ini berarti bahwa erosi yang berlangsung di sana cukup kuat dan cepat.

## Anomali Magnet

Data anomali magnet total daerah penelitian diperoleh dari database yang merupakan data hasil survei magnet udara (airborne magnetic) yang dilakukan Pertamina. Anomali magnet total daerah ini berkisar dari sekitar - $150 \mathrm{~s} / \mathrm{d} 750$ nanotesla ( nT ). Seperti pada anomali Bouguer, anomali magnet ini dibagi menjadi dua bagian, yaitu :

1. Daerah anomali tinggi dengan nilai $\geq 150 \mathrm{nT}$ menempati daerah Temanggung dan Gunung Merbabu di selatan menerus ke utara sampai selatan Kaliwungu, dan dari kompleks Gunung Ungaran menerus ke barat sampai daerah Sukorejo. Daerah anomali tinggi ini ditempati oleh batuan intrusi andesit dan batuan breksi vulkanik andesit.
2. Daerah anomali rendah dengan nilai $\leq 150 \mathrm{nT}$ * menempati daerah-daerah di luar daerah anomali tinggi tersebut di atas. Daerah ini ditempati oleh batuan-batuan yang bersifat non magnet, seperti batuan basal dan batu gamping.
Anomali magnet sisa di daerah penelitian mempunyai nilai dari -225-275nT, dan memberikan gambaran sebagai berikut : Daerah anomali magnet sisa tinggi (dengan nilai $\geq 25 \mathrm{nT}$ ) menempati daerah Ambarawa, Gunung Ungaran, dan Sukorejo. Secara permukaan yang lebih dangkal, Daerah Ambarawa dan Gunung Ungaran adalah terpisah walaupun keduanya sama-sama ditempati oleh intrusi batuan andesit. Daerah Sukorejo ditempati oleh lapisan batuan breksi vulkanik andesit yang mempunyai ketebalan yang tipis karena pada anomali Bouguer sisa daerah ini termasuk kedalam cekungan (sinklin). Daerah Gunung Sundoro pada anomali Bouguer

## Geo-resources

menunjukkan anomali tinggi dan diinterpretasikan merupakan suatu intrusi batuan beku, tetapi pada anomali magnet merupakan suatu batuan nonmagnet (basaltic ?). Cekungan (sinklin) utama pada anomali Bouguer sisa (dari Sukorejo sampai selatan Semarang) terbagi menjadi antiklin dan sinklin, dan bagian sinklinnya ditempati oleh batu sedimen gampingan. Anomali minimum di barat daya dan tenggara Gunung Ungaran merupakan
imbas balik dari anomali tinggi dari Gunung Ungaran dan Ambarawa. Daerah di sebelah tenggara Semarang merupakan cekungan anomali rendah, tetapi pada anomali Bouguer merupakan bagian dari anomali positif yang ditempati oleh batu gampingan rapat massa relatif tinggi, tetapi mempunyai sifat kemagnetan yang rendah. Hasil interpretasi kulitatif ini dibuat pada peta penyebaran struktur (Gambar 14).


Gambar 8. Model geologi dari penampang A-A., anomali Bouguer.


Gambar 8a. Model geologi dari penampang A-A', anomali sisa.


Gambar 9a. Model geologi dari penampang B-B', anomali sisa.


Gambar 10. Model geologi. penampang C-C', anomali Bouguer.


Gambar 10a. Model geologi,penampang $\mathrm{C}^{\prime} \mathrm{C}^{\prime}$, anomali sisa.


Gambar 11a. Model geologi,penampang D-D',anomali sisa.

## Geo-resources



Gambar 12. Peta Anomali Magnit Total daerah Semarang dan Sekitarnya.


Gambar 13. Peta Anomali Magnit Sisa daerah Semarang dan Sekitarnya.


Gambar 14. Peta penyebaran Struktur, hasil analisis kualitatif dan kuanlitatif dari anomali Bouguer dan magnit.

## KESIMPULAN

Hasil analisis kualitatif dan kuantitatif anomali Bouguer dan kualitatif anomali magnet menunjukkan bahwa daerah Semarang dan sekitarnya adalah bagian blok yang naik dari sesar berarah timur barat, sehingga gejala penurunan Kota Semarang tidak berhubungan dengan system sesar ini.

## SARAN

Di bagian selatan daerah penelitian (di daerah Gunung Ungaran ) dijumpai adanya mata air panas, sehingga berpotensi untuk keterdapatan jebakan panas bumi (geothermal), dan di bagian utara
dijumpai adanya lapangan minyak bumi tua, seđlangkan hasil penelitian ini menunjukkan adanya struktur lipatan, sehingga daerah sekitar pantai utara sampai lepas pantai sangat mungkin terdapat cebakan hidrokarbon. Untuk itu perlu penelitian lebih terperinci.

## UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada Kepala Pusat Survei Geologi, Koordinator Program P2D, dan Dewan Ilmiah. Penulis juga menghargai semua rekan-rekan yang terlibat dalam pengukuran dan pengambilan data lapangan.

## Geo-resources

## ACUAN

Adkins J., Sukardi S., Said H., and Untung M., 1978. A Regional Gravity Base Station Network for Indonesia, Publikasi Teknik Seri Geofisika No. 6, Direktorat Geologi Bandung.
Budiono, K., 1996. Geologi Teknik pantai dan lepas pantai Kodya Semarang, Jawa Tengah. Pusat Penelitian Geologi Kelautan (PPGL), Bandung.
Dobrin M.B. and Savit C.H., 1988. Introduction to Geophysical Prospecting, Fourth Edition, McGraw-Hil Book Cpmpany, New York.
Widianto, E., 2008. Penentuan Konfigurasi Struktur Batuan Dasar dan Jenis Cekungan dengan Data Gaya Berat serta Implikasinya pada Target Eksplorasi Minyak dan Gas Bumi di Pulau Jawa. Disertasi Untuk memperoleh gelar Doktor. Program Studi Teknik Geofisika, Institut Teknologi Bandung.
Irham, M. N., Yulianto,T., Kadir, W. G. A. dan Sarkowi, M., 2004. Estimasi Amblesan tanah di Daerah Semarang Bawah dengan metode Gaya berat 4D. Prosiding Pertemuan IImiah Tahunan ke 29 HAGI, Yogyakarta 5-7 Oktober 2004.
Leick, A., 1989. GPS Satellite Surveying. John Wiley \& Sons, New York.
Lumban Batu, U. M., 2004, Kajian Potensi Bencana Pelulukan (Liquefaction) di Daerah Semarang dan Sekitarnya. Jurnal Sumber Daya Geologi 1 (1) Maret 2004, Pusat Penelitian dan Pengembangan Geologi, Bandung.
Sani. M., dan Otong, H.G., 1991. Peta Anomali Bouguer Lembar Semarang, Jawa, Puslitbang Geologi, Bandung.
Supriyadi., Santoso, D., Kadir, W. G. A., Sarkowi, M. dan Zainuddin, A., 2005. Identifikasi Amblesan Tanah di Kawasan Perumahan Puri Anjasmoro PRPP Semarang Menggunakan Gaya berat Mikro 4D. Jurnal Geofisika, Edisi Tahun 2005 (2) : 25-31
Thanden, R. E., Sumadirdja, H., Richards.P.W., Sutisna. K., dan Amin. T. C., 1996. Peta Geologi Lembar Semarang, Jawa, Puslitbang Geologi, Bandung.
Tobing, T., Syarief, E. A., dan Dodid, M., 2000. Penyelidikan Geologi Teknik Amblesan Tanah Daerah Se marang dan Sekitarnya, Jawa Tengah. Direktorat Geologi Tata Lingkungan, Bandung.

Naskah diterima: 5 Februari 2007
Revisi terakhir : 10 Juni 2008

