PENYEBARAN BATUAN GRANIT DAN SEDIMEN KUARTER BERDASARKAN INTERPRETASI DATA SEISMIK DI PERAIRAN BATAM UTARA

Ediar Usman
Pusat Penelitian dan Pengembangan Geologi Kelautan
J. Dr. Djundjunan No. 236, Bandung 40174

Abstract

SARI Hasil pemetaan dan publikasi mengenai penyebaran batuan granit dan sedimen Kuarter di perairan Pulau Batam dan sekitarnya masih terbatas jumlahnya. Hal ini karena penyebaran batuan granit yang muncul ke permukaan seperti di perairan Batam Utara dan sekitarnya juga terbatas. Hasil interpretasi rekaman seismik menunjukkan adanya beberapa ciri reflektor yang menggambarkan batuan granit dan sedimen Kuarter. Berdasarkan interpretasi model batuan alas dan sedimen Kuarter, daerah penyebaran batuan alas adalah di bagian barat dan utara Pulau Batam, serta di bagian utara Pulau Bintan. Sedangkan sedimen Kuarter yang terbentuk, berdasarkan ciri-ciri reflektor, adalah endapan fluviatil berbutir kasar di bagian bawah yang mengisi lembah-lembah bawah laut dan endapan aluvium berbutir halus di bagian atas. Bila batuan alas tersebut dikorelasikan dengan geologi regional di perairan Pulau Batam dan sekitarnya, maka batuan alas tersebut adalah granit.

Kata kunci: granit, batuan alas, sedimen Kuarter, interpretasi seismik, Batam Utara

Abstract

Results of mappings and publications concerning the distribution of granite and Quaternary sediments in territorial waters of Batam Island and its surroundings are still limited. It is caused by the distribution of the granite which emerges to sea bottom in territorial waters in the part of the North Batam and its surroundings is also limited. Results of seismic interpretation show the existence of some reflector characteristics of the granite and the Quaternary sediments. Based on the interpretation model at bedrock and the Quaternary sediment, distribution area of the bedrock is in part of west and north of Batam Island and also in the part of the north of Bintan Island. While the Quaternary sediment, based on reflector seismic characters, is coarse fluvial deposits at the bottom as the channel fill between some domes of granite body and recent marine deposits at the top. If the bedrock is correlated with regional geology in territorial water of the Batam Island and its surroundings, the bedrock is granite.

Keywords: granite, bedrock, Quaternary s: Pit, 3. ic interpretation, North Batam

PENDAHULUAN

Latar Belakang

Perairan Batam Utara merupakan perairan yang menghubungkan Pulau Batam (Indonesia) dengan Singapura. Daerah ini juga merupakan jalur pelayaran internasional, sehingga merupakan daerah yang ramai dengan lalu lintas pelayaran kapal. Perairan Batam Utara pernah menjadi daerah pertambangan pasir laut yang diekspor ke Singapura dalam jumlah besar.

Secara geologis, perairan Batam Utara merupakan daerah jalur granit Asia Tenggara dan merupakan daerah akumulasi sedimen Kuarter dengan berbagai variasi ukuran butir dan kandungan sumber daya mineral. Pada saat kegiatan penambangan pasir laut dilakukan beberapa tahun yang lalu, mineral kuarsa
dan'timah ikut ditambang bersama pasir laut sebagai bahan urugan dan reklamasi. Karena merupakan salah satu batuan sumber mineral kuarsa dan timah, maka perlu dilakukan penelitian mengenai penyebaran batuan granit dan sedimen Kuarter di perairan Batam Utara. Diharapkan dengan penelitian penyebaran batuan granit dan sedimen Kuarter tersebut, kegiatan penambangan lebih mengarah pada mineral-mineral ekonomis yang nilainya jauh lebih besar dibandingan dengan pasir laut. Di lain pihak, penambangan pasir laut dalam skala besar telah menyebabkan kerusakan dasar laut dan abrasi pantai.

Berdasarkan hal tersebut maka pada Tahun Anggaran 2005, Pusat Penelitian dan Pengembangan Geologi Kelautan telah melakukan

Geo-Resources

penelitian geologi dan geofisika kelautan di perairan Batam Utara (Usman dkk., 2005). Dari penelitian tersebut dapat diketahui bahwa penyebaran batuan granit merupakan salah satu batuan sumber sedimen Kuarter di perairan Batam Utara.

Maksud dan Tujuan

Maksud penelitian ini adalah untuk menginventarisasi data dan informasi geologi kelautan guna mendukung inventarisasi data sumber daya mineral di wilayah laut nasional, khususnya di perairan Batam Utara. Data tersebut diharapkan akan menjadi dasar dalam mengevaluasi kondisi geologi, potensi energi, dan sumber daya mineral.

Tujuan penelitian adalah untuk memperoleh datadata geologi bawah permukaan laut tentang penyebaran batuan granit sebagai salah satu batuan sumber sedimen Kuarter. Penelitian tersebut diharapkan akan bermanfaat bagi kegiatan penelitian yang lebih rinci mengenai geologi dan potensi sumber daya mineral yang bernilai ekonomis di masa yang akan datang.

Lokasi Penelitian

Lokasi penelitian terletak di. perairan Batam Utara yang merupakan perairan yang menghubungkan Pulau Batam (Indonesia) dengan Singapura, dan secara geografis terletak pada koordinat $103^{\circ} 30^{\prime}$ $104^{\circ} 30^{\prime} \mathrm{BT}$ dan $01^{\circ} 00^{\prime}-01^{\circ} 30^{\prime} \mathrm{LS}$ (Gambar 1).

Lokasi penelitian, selain merupakan daerah jalur penyeberangan yang menghubungkan Pulau Batam (Indonesia) dengan Singapura, juga sebagai jalur pelayaran internasional. Pengambilan lintasan seismik dilakukan di sekitar perairan pantai (nearshore) Pulau Batam, sedangkan di sekitar garis perbatasan tidak dapat dilakukan karena kondisi lalu lintas pelayaran yang ramai, sehingga berbahaya bagi kegiatan penelitian.

Geologi Regional

Secara geologis perairan Batam termasuk ke dalam jalur timur (eastern province) granit Asia Tenggara yang berumur Karbon, Perem, dan Trias yang kaya akan kandungan timah (Cobing, 1992). Granit ini terbentuk pada saat orogenesis Trias yang mengangkat batuan granit ke permukaan sebagai

Gambar 1. Lokasi penelitian dan lintasan seismil/sounding perairan Batam Utara.
satu rangkaian pulau-pulau timah yang membujur dari daratan Thailand - Malaysia hingga Bangka Belitung. Jalur timah ini dikenal sebagai Tin Belt of Sumatera yang kemudian dikenal sebagai jalur granit Asia Tenggara. Mineral-mineral plaser yang didominasi oleh timah dan mineral kuarsa tersebut berasal dari batuan granit pada pulau-pulau timah (tin islands) yang terdapat di sekitar perairan Pulau Batam yang telah mengalami deformasi dan pelapukan.
Batuan granit di Pulau Batam dan sekitarnya merupakan kesatuan batuan granit yang terdapat di Semenanjung Malaysia yang melampar hingga ke daerah Kepulauan Riau dan Kalimantan Barat sebagai batuan alas sedimen Tersier dan Kuarter (Cobing, 1992). Ciri-ciri granit ini adalah: berwarna abu-abu kemerahar hingga kehijauan, berbutir kasar dengan komposisi mineral kuarsa, pirit, felspar, horenblenda, dan biotit. Selanjutnya menurut Cobing (1992), batuan granit di perairan Pulau Batam merupakan Granit Tipe S yang dicirikan oleh kandungan SiO_{2} (lebih besar dari 66%) dan adanya indikasi kandungan Sn , sedangkan kandungan CaO dan $\mathrm{Na}_{2} \mathrm{O}$ lebih kecil.

Sedimen yang merupakan endapan pasir laut yang mengandung kuarsa adalah sedimen yang masih bersifat lepas dan belum padu, disebut sebagai sedimen Kuarter. Sedimen ini terbentuk setelah terjadinya pencairan es di kutub pada Plio-Plistosen sehingga terjadi kenaikan permukaan air laut di seluruh dunia yang selanjutnya diikuti oleh proses erosi besar-besaran yang mentranspor sedimen berbutir halus - kasar ke arah laut (Yoo and Park, 2000). Ringis (1993) menyebutkan bahwa sedimen Kuarter berbutir kasar adalah hasil erosi batuan alas yang mengisi lembah-lembah antar punggungan (channel fill). Pada rekaman seismik, sedimen ini dicirikan oleh bentuk reflektor seismik bergelombang terputus-putus (wavy) dan perlapisan terputusputus.
Menurut Yoo and Park (2000), erosi dan pengendapan sedimen di dalam lembah-lembah tersebut merupakan ciri utama sedimen Plistosen yang menutupi seluruh Paparan Sunda (Sunda She/f). Setelah pencairan es dan seluruh Paparan Sunda tergenang oleh air laut, maka beberapa
sedimen yang lebih halus (suspended sediment) asal darat dan laut bergerak menutupi Sekuen 1 membentuk Sekuen 2. Sekuen 2 terbentuk selama periode kenaikan permukaan air laut yang hingga sekarang masih berlangsung (post Pleistocene), diendapkan sebagai campuran antara sedimen halus asal darat dan laut dalam bentuk sedimen Resen (recent marine deposits) (Ringis, 1993). Ciri-ciri pada penampang seismik Sekuen 2 adalah selaras (concordance) dan berlaminasi sejajar (parallel lamination).

METODE PENELITIAN DAN ANALISIS

Pemeruman

Pemeruman adalah metode yang dipergunakan untuk mengetahui kedalaman dasar laut dengan menggunakan energi gelombang suara. Pada penelitian ini, metode tersebut dimaksudkan untuk mendapatkan morfologi dasar laut serta hubungannya dengan keterdapatan dan penyebaran granit. Pengukuran dilakukan secara digital dan analogis, dan data yang diperoleh disimpan di komputer dan direkam secara grafis pada kertas rekaman odom hydrotrac.
Untuk memperoleh data kedalaman secara rinci dilakukan pengambilan lintasan dengan arah tegak lurus terhadap garis pantai (utara - selatan) dan memotong bidang kedalaman laut. Dari pola tersebut akan diperoleh angka kedalaman secara lengkap untuk penyusunan peta batimetri.

Seismik Pantul

Untuk mendapatkan data mengenai batuan di bawah permukaan laut dipergunakan metode seismik pantul (seismic reflection). Dengan menggunakan metode tersebut dapat diketahui sebaran/ketebalan batuan dan sedimen di dasar laut. Penafsiran data seismik pantul menggunakan prinsip-prinsip Seismik Stratigrafi, yaitu pengenalan terhadap ciri-ciri reflektor batas atas, batas bawah dan bagian dalam (internal reflector) setiap unit seismik. Selanjutnya pengenalan dan penamaan ciri-ciri reflektor seismik mengacu pada ciri-ciri reflektor yang menggambarkan perbedaan karakter pantulan setiap lapisan batuan atau sedimen yang dilalui oleh gelombang (Priyono, 2000).

Umumnya ciri-ciri reflektor di daerah penelitian mengacu pada Sangree \& Wiedmier (1979), Sherif (1980) dan Ringis (1993), yaitu: selaras (concordance), berlaminasi sejajar (parallel lamination), berbentuk huruf s (sigmoid), bergelombang terputus-putus (wavy), berlapisan terpotong-potong, berbukit-bukit (mounded), pengisian (channel fill) dan longsoran (s/ump), berbintik-bintik kacau tidak beraturan (chaotic) serta bidang pepat erosi (erosional truncation) atau kontak onlap. Sedangkan untuk mengetahui ciri-ciri reflektor pada granit dan batas antara granit dengan sedimen Kuarter pada penampang seismik mengacu pada Ringis (1993), yaitu berbukit-bukit (mounded), pengisian (channel fill) dan longsoran (s/ump), berbintik-bintik kacau tidak beraturan (chaotic), serta bidang pepat erosi (erosional truncation).

HASIL PENELITIAN DAN PEMBAHASAN

Batimetri dan Morfologi Dasar Laut

Kegiatan pemeruman dilakukan untuk mengukur kedalaman air laut secara menerus sehingga diperoleh suatu penampang topografi dasar laut pada setiap lintasan yang diketahui posisinya. Dari hasil pemeruman sepanjang lintasan, diperoleh data pemeruman dengan kedalaman laut bervariasi antara 5 hingga 60 meter, setelah dikoreksi dengan fluktuasi pasang surut terhadap kedudukan permukaan laut rata-rata (mean-sea level), kemudian diplot pada peta dasar dengan interval kontur 5 meter dalam bentuk peta batimetri (Gambar 2).

Peta batimetri tersebut dapat menggambarkan posisi dan kedalaman batuan granit, sehingga akan memudahkan dalam interpretasi seismik, terutama hubungan penampakan granit dan sedimen Kuarter dengan kedalaman laut. Berdasarkan peta batimetri tersebut, maka perubahan kedalaman dapat dibedakan menjadi tiga kelompok daerah yang membentuk satuan morfologi dasar laut, yaitu:

Bagian barat daerah penelitian membentuk satuan morfologi landai yang ditandai oleh pola garis kontur yang renggang, mulai kedalaman 20 hingga 30 meter. Gambaran morfologi di bagian barat dapat dilihat pada penampang seismik L-69 (Gambar 4). Pada lintasan L-69 tersebut, bagian barat dan bagian timur lintasan membentuk permukaan dasar laut
yang hampir datar karena dibentuk oleh progradasi sedimen Kuarter dengan ciri-ciri reflektor berbentuk s (sigmoid). Bagian tengah lintasan membentuk permukaan dasar laut bergerigi yang merupakan bagian puncak granit. Secara keseluruhan morfologi dasar laut di bagian barat (seperti L-69) adalah morfologi dataran dengan perubahan kedalaman yang berangsur-angsur.

Bagian tengah (perairan bagian utara Batam dan Bintan) membentuk satuan morfologi curam yang ditandai oleh pola garis kontur yang rapat, dan perubahan kedalaman mulai 20 meter hingga 60 meter. Bagian tengah ini merupakan bagian terdalam di daerah penelitian hingga mencapai daerah perbatasan dengan Singapura. Gambaran morfologi di bagian tengah dapat dilihat pada penampang seismik L-81 (Gambar 5) dan L-117 (Gambar 6). Pada lintasan L-81, hampir seluruh permukaan dasar laut merupakan batuan granit dengan morfologi yang lancip, sedimen hanya dijumpai setempat-setempat, yaitu di puncak dan di lereng punggungan. Lintasan L-117 menunjukkan bahwa bagian utara lebih dalam, sedimen Kuarter makin menipis, dan terdapat morfologi tonjolan yang merupakan batuan granit. Di bagian tengah daerah penelitian, makin ke arah utara sedimen Kuarter makin menipis dan bahkan hilang dan muncul kembali di ujung utara lintasan L-117.

Bagian timur daerah penelitian membentuk satuan morfologi landai dan bergelombang yang ditandai oleh pola garis kontur yang renggang mulai kedalaman 1.5 hingga 30 meter. Morfologi di bagian timur hampir sama dengan morfologi di bagian barat, yaitu dibentuk oleh progradasi sedimen Kuarter yang tebal dan luas.

Identifikasi Batuan Granit dan Sedimen Kuarter Berdasarkan Ciri-ciri Reflektor Seismik

Daerah penelitian merupakan bagian jalur granit Asia Tenggara yang membentang dari daratan Thailand, Malaysia, dan Indonesia (Riau Kepulauan). Granit tersebut merupakan batuan alas (bedrock) sedimensedimen Kuarter di Kepulauan Riau (Cobing, 1992). Untuk mengidentifikasi batuan granit sebagai batuan alas tersebut, dilakukan interpretasi terhadap rekaman seismik berdasarkan pengenalan ciri-ciri reflektor.

Gambar 2. Peta batimetri perairan Batam Utara (Usman dkk., 2005).

Batuan granit sebagai batuan alas (bedrock) dicirikan oleh bentuk reflektor berbukit-bukit kecil (mounded), kadang-kadang berbintik-bintik tidak beraturan (chaotic), di bagian bawah bebas pantulan (free reflector), dan bagian puncak membentuk bidang pepat erosi (erosional truncation) (Ringis, 1993). Bidang pepat erosi tersebut merupakan batas antara granit dengan sedimen Kuarter. Selanjutnya menurut Ringis (1993), di atas bidang pepat erosi terdapat sedimen Kuarter dengan pola reflektor yang bergelombang terputus-putus (wavy) dan perlapisan terputus-putus yang mengisi lembah-lembah antar punggungan (channel fill). Sedimen yang mengisi lembah-lembah tersebut umumnya adalah coarse fluvial deposits (sedimen fluviatil berbutir kasar, berukuran pasir - kerikil) (Gambar 3).Berdasarkan ciri-ciri pengenalan batuan alas tersebut, beberapa penampakan pada rekaman seismik di daerah penelitian menunjukkan adanya batuan granit sebagai batuan yang mengalasi sedimen Kuarter dan batuan granit yang muncul sampai di atas permukaan dasar laut sebagai intrusi.

Batuan alas granit dicirikan oleh karakter rekaman seismik yang membentuk bukit-bukit kecil
(mounded), yang makin ke bawah bebas pantulan (free reflection) dan dengan batuan sedimen di atasnya dipisahkan oleh bidang pepat erosi (erosional truncation). Sedangkan batuan granit yang muncul di permukaan dasar laut umumnya membentuk tonjolan yang dicirikan oleh karakter rekaman seismik berbintik-bintik kecil tidak beraturan (chaotic) dan di bagian bawah bebas pantulan. Sedimen Kuarter diendapkan pada pùncak-puncak, lereng, dan kaki punggungan membentuk sedimen nendatan (s/ump).

Berdasarkan pengenalan ciri-ciri reflektor tersebut diperoleh beberapa penampang seismik yang menunjukkan adanya batuan granit dan sedimen Kuarter di daerah penelitian, dan selanjutnya hasil identifikasi tersebut dapat menunjukkan penyebarannya.

Granit Sebagai Batuan Alas

Penampakan batuan granit sebagai batuan alas, dapat dilihat dari beberapa penampang seismik di bagian barat daerah penelitian. Satu di antaranya adalah penampang seismik lintasan L-69 yang berarah barat - timur (Gambar 4).

Geo-Resources

Secara umum ciri-ciri reflektor pada penampang L69 mempunyai kesamaan dengan ciri-ciri penampang yang menggambarkan batuan alas (bedrock) di bagian bawah dan sedimen Kuarter di bagian atas sebagaimana yang dikemukakan oleh Ringis (1993) pada gambar 3.
Pada lintasan L-69, hanya sebagian kecil permukaan granit yang muncul ke permukaan dasar laut dan sebagian besar telah tertutup oleh sedimen Kuarter.

Gambar 3. Model identifikasi batuan alas (bedrock) dan pemisahan pola reflektor dengan sedimen yang lebih muda di bagian alas (Ringis, 1993).

Adanya sedimen Kuarter yang tebal bila dikaitkan dengan kondisi geologi dasar laut regional adalah karena batuan sumber sedimen-sedimen tersebut merupakan batuan granit terdekat yang mengalami erosi yang intensif. Batuan granit sebagai batuan alas dengan sedimen Kuarter (Sekuen 1 dan 2) di bagian atas dipisahkan oleh suatu bidang pepat erosi (erosional truncation). Bidang tersebut mengalasi dua sekuen sedimen yang dibedakan dari perbedaan ciri-ciri reflektor. Sekuen 1 dengan ciri-ciri paralel dan bergelombang terputus-putus (wavy) dan perlapisan terputus-putus, merupakan sedimen dengan dominasi berbutir kasar (coarse fluvial deposits) yang berasal dari erosi permukaan granit dan mengisi lembah antar punggungan (channel fill) (Ringis, 1993; Yoo and Park, 2000). Ketebalan Sekuen 1 adalah sekitar 10-15 meter. Sedangkan Sekuen 2 di bagian permukaan dasar laut yang merupakan sedimen yang lebih muda dengan ciri-ciri reflektor sejajar (parallel) dan selaras (concordance) terhadap Sekuen 1 merupakan endapan sedimen asal darat dan laut berbutir halus (recent marine deposits). Ketebalan Sekuen 2 adalah sekitar 15-20 meter.

Gambar 4. interpretasi rekaman seismik lintasan L-69 yang berarah barat - timur, terletak di bagian barat daerah penelitian yang menunjukkan batuan granit dan sedimen Kuarter (Sekuen 1 dan 2) dipisathkan oleh bidang pepat erosi.

Granit Sebagai Batuan Intrusi

Granit sebagai batuan intrusi yang muncul ke permukaan dasar laut, di daerah penelitian terdapat pada beberapa penampang seismik. Satu di antaranya adalah penampang seismik lintasan L-81 yang berarah timur - barat (Gambar 5).
Pada lintasan L-81, perbedaan ciri-ciri reflektor antara intrusi granit dan sedimen Kuarter dapat dikenali dengan mudah, dan batas antara keduanya juga lebih mudah dikenali. Batuan granit sebagai intrusi umumnya membentuk tonjolan dengan ciriciri reflektor berbintik-bintik tidak beraturan (chaotic), dan makin ke arah bawah dicirikan oleh karakter seismik bebas pantul (free reflection).
Sekuen 1 dicirikan oleh bentuk reflektor selaras (concordance), sedikit terlipat bergelombang terputus-putus (wavy), dan perlapisan terputusputus. Di bagian lereng dan kaki membentuk sedimen longsoran (s/ump) dengan ketebalan antara 5-10 meter. Berdasarkan pengenalan ciri-ciri reflektor tersebut dan dikorelasikan dengan model pada gambar 3, dapat diinterpretasikan bahwa Sekuen 1 merupakan sedimen Kuarter berbutir kasar yang berasal dari erosi pada bagian permukaan granit.
Penampakan yang sama terlihat pula pada penampang seismik lintasan L-117 yang terletak di perairan bagian utara Batam, sekitar garis perbatasan dengan Singapura. Batuan granit tersebut muncul di daerah kaki dan lereng lembah yang juga membentuk tonjolan (Gambar 6).
Sedangkan sedimen Kuarter terbentuk di antara tonjolan-tonjolan granit dengan ciri-ciri reflektor yang membentuk longsoran, kecuali di bagian yang lebih dangkal di bagian selatan sekitar pantai Pulau Batam. Bagian ujung utara penampang seimik dicirikan oleh bentuk reflektor gabungan, yaitu laminasi sejajar, bergelombang terputus-putus, dan perlapisan putus-putus. Secara umum, penampang L-117 merupakan salah satu penampang seismik dengan arah selatan - utara di utara Pulau Batam yang menunjukkan bahwa granit muncul di daerah
lembah yang sempit dan dalam. Pada lintasan ini juga ditunjukkan bahwa sedimen Kuarter di bagian selatan dan ujung utara penampang seismik adalah endapan berbutir kasar.

Penyebaran Granit

Hasil interpretasi terhadap rekaman seismik berdasarkan pengenalan ciri-ciri refléktor seismik di daerah penelitian selanjutnya dituangkan ke dalam bentuk peta penyebaran granit dan sedimen Kuarter (Sekuen 1 dan 2). Hasilnya. menunjukkan penyebaran granit yang cukup luas, umumnya terdapat di bagian utara Pulau Batam dan Pulau Bintan (Gambar 7).
Di bagian barat dan timur daerah penelitian, granit tersebut muncul ke permukaan dasar laut kemudian mengalami erosi, dan hasil erosi tersebut mengisi lembah-lembah di antara punggungan granit membentuk sedimen Sekuen 1 yang cukup luas. Hasil erosi yang intensif tersebut menutupi bagian bawah granit, sehingga hanya bagian puncak yang masih muncul ke dasar laut.
Kondisi ini berbeda dengan granit di sebelah barat laut Batam, umumnya muncul ke permukaan sebagai intrusi, walaupun batas antara intrusi dan sedimen di bagian selatan tidak terekam, namun sedimen Sekuen 1 mengisi puncak punggungan dan lembah antara dua punggungan. Di bagian utara Batam sebagaimana L-81, penampakan granit tersebut makin jelas dan sedimen Kuarter hanya sebagian kecil membentuknendatan.
Sedimen Kuarter (Sekuen 1) mempunyai penyebaran di bagian barat dan utara Pulau Batam serta di bagian barat Pulau Bintan hingga perbatasan dengan Singapura. Di bagian utara Pulau Bintan penyebaran sedimen Kuarter (Sekuen 2) hingga mencapai perairan Laut Natuna. Secara umum, penyebaran sedimen Sekuen 1 adalah di sekitar Pulau Batam, Pulau Bintan, dan pulau-pulau kecil lainnya di bagian barat. Sedangkan penyebaran sedimen Sekuen 2 pada umumnya makin menjauh dari Pulau Batam, Pulau Bintan, dan pulau-pulau kecil lainnya.

Gambar 5. Interpretasi batuan granit pada linlasan L-81 yang yang berarah barat - timur muncul di atas permukaan dasar laut dengan ciri-ciri reflektor berbintik-bintik kecil tidak beraturan (chaotic) dan makin ke arah bawah bebas pantul (free reflection).

Gambar 6. Penampang seismik lintasan L-117 berarah selatan - utara menunjukkan batuan granit muncul ke permukaan di sekitar lereng dan kaki lembah.

Gambar 7. Peta penyebaran ganit dan sedimen Kuarter berdasarkan interpretasi data seismik di perairan Batam Utara.

KESIMPULAN

- Hasil interpretasi rekaman seismik di perairan Batam Utara dapat mengidentifikasi penyebaran granit dan sedimen Kuarter. Penyebaran batuan granit terletak di bagian barat dan utara Pulau Batam, serta utara Pulau Bintan. Di bagian barat hanya sebagian permukaan granit yang muncul ke permukaan dasar laut, sebagian tertutup sedimen Kuarter. Penyebaran granit yang muncul ke permukaan dasar laut dalam bentuk tonjolan adalah di bagian utara Pulau Batam dan utara Pulau Bintan. Di bagian lembah yang memisahkan Pulau Batam (Indonesia) dan Singapura, batuan granit muncul dalam bentuk tonjolan yang tajam - lancip.
- Sedimen Kuarter dapat dibagi menjadi dua bagian, yaitu bagian bawah (Sekuen 1) sebagai hasil erosi granit yang mengisi lembah-lembah dan puncak punggungan pada batuan granit. Sedimen ini umumnya terdiri atas sedimen berbutir kasar. Bagian atas (Sekuen 2) dengan bidang pantulan yang sejajar dan selaras merupakan sedimen dengan butir halus asal darat dan laut.

SARAN

Hasil interpretasi seismik terhadap batuan granit dan sedimen Kuarter memberikan gambaran tentang penyebaran batuan yang kaya akan endapan berbutir kasar (kuarsa dán timah plaser ?). Untuk mengetahui lebih detail, perlu dilakukan penelitian lebih rinci tentang potensi kuarsá dan timah plaser di daerah penelitian, terutama di daerah-daerah penyebaran granit.

Ucapan Terima Kasih

Terima kasih kami sampaikan kepada Kepala Pusat Penelitian dan Pengembangan Geologi Kelautan Ir. Subaktian Lubis, M.Sc. atas izinnya melaksanakan penelitian di LP-1017. Terima kasih juga disampaikan kepada Ir. Dida Kusnida, M.Sc. dan Lili Sarmili, M.Sc. atas kritik dan saran-sarannya. Tak lupa terima kasih kepada IKG Aryawan, Luli Gustiantini, Yani Permanawati, Novi Sutisna, Subarsyah, dan Hartono atas kerjasamanya.

ACUAN

Cobing, EJ., 1992, The Granite of the South-East Asian Tin Belt. British Geological Survey, London.
Priyono, A., 2000, Interpretasi Geologi Seismik. Diktat Kuliah Program Pasca Sarjana Geologi dan Geofisika Institut Teknologi Bandung, Jurusan Geofisika Institut Teknologi Bandung, 255 hal.
Ringis, J., 1993, Deposit Models for Detrital Heavy Minerals on East Asian Shelf Areas and the Use of High Resolution Seismic Profiling Techniques in Their Exploration. CCOP Publication.
Sangree, JB. and JM. Wiedmier, 1979, Interpretation Facies from Seismic Data, Geophysic 44, N.2, p. 131.
Sherif, RE., 1980, Seismic Stratigraphy. International Human Resources Development Corporation, Boston, P. 222 .

Usman, E., A. Setyanto, L. Gustiantini, Y. Permanawati, IKG. Aryawan, Subarsyah, Sahudin dan Hartono, 2005,
Penelitian Geologi dan Potensi Energi dan Sumber Daya Mineral Bersistem (LP-1017) Batam -
Riau Kepulauan, Pusat Penelitian dan Pengembangan Geologi Kelautan (Lap. Intern), 118 hal.
Yoo, DG. and SC. Park, 2000, High Resolution Seismic Study as a Tool for Sequence Stratigraphic Evidence of High Frequency Sea Level Changes; Latest Pleistocene-Holocene Example from Korea Strait. Journal of Sedimentary Research, Vol. 70 No. 2, p.296-309.

Naskah diterima	$: 16$ Oktober 2006	
Revisiterakhir	$:$	30 Desember 2006

