PETROGRAFI DAN PROSES DIAGENESIS BATUGAMPING FORMASI BATURAJA DI LINTASAN AIR SAKA, OKU SELATAN, SUMATERA SELATAN

Sigit Maryanto *)
Pusat Survei Geologi
JI. Diponegoro No. 57, Bandung 40122

Abstract

SARI Batugamping Formasi Baturaja yang berumur Miosen Awal, tersingkap di Lintasan Air Saka dengan ketebalan terukur mencapai 247 meter. Batugamping Formasi Baturaja ini menindih secara selaras batuan silisiklastika Formasi Talangakar, dan tertindih batuan silisiklastika Formasi Gumai. Batugamping tersebut telah mengalami beberapa proses diagenesis, antara lain bioturbasi, pengisian rongga fosil, penggantian, penyemenan, penghabluran ulang, pemikritan, pendolomitan, pembentukan mineral autigenik, pemampatan, pelarutan, penstilolitan, dan peretakan. Beberapa di antara proses diagenesis ini mempunyai hubungan antarsesamanya dengan nilai keeratan hubungan sangat rendah hingga sedang.

Kata kunci: Petrografi, butiran karbonat, penyemenan, meteorik, uji statistik

ABSTRACT

The Early Miocene limestone of Baturaja Formation crops out along the Air Saka Section, having a measured thickness of 247 metres. This carbonate formation lies conformably on the siliciclastic sediments of Talangakar Formation, and it is in turn, conformably overlain by the siliciclastic sediments of Gumai Formation. The limestone was affected by several diagenetic processes, such as bioturbation, fossil cavity filling, replacement, cementation, recrystallization, micritization, dolomitization, authigenic-mineral formation, compaction, dissolution, stylolitization, and fracturing. Some of these diagenetic processes have a very weak to moderate coeficient of interrelationship.
Keywords: Petrography, carbonate grains, cementation, meteoric, statistical test

PENDAHULUAN

Cadangan hidrokarbon pada batuan karbonat cukup diperhitungkan, termasuk batuan karbonat yang berada di daerah Sumatera (Scrutton, 1976; Bishop, 2000; Maryanto, 2005). Studi batugamping khususnya terumbu sangat penting, terutama menyangkut aspek lingkungan pengendapan, paleontologi, paleoekologi, dan geologi regional dalam upaya pencarian hidrokarbon (Longman, 1981). Guna mendapatkan data geologi permukaan terbaru, maka Pusat Survei Geologi (dahulu Pusat Penelitian dan Pengembangan Geologi) mengadakan penelitian stratigrafi dan sedimentologi batuan karbonat di Subcekungan Palembang (Limbong drr., 2004; Maryanto drr., 2005). Makalah ini dibuat sebagai bagian bahasan lanjutan secara rinci hasil kegiatan tersebut.

Tujuan

Tujuan penelitian ini untuk mengetahui jenis proses diagenesis yang telah berpengaruh terhadap batugamping Formasi Baturaja di Lintasan Air Saka, Sumatera Selatan, secara petrografis dengan mikroskop polarisasi. Sejauh mana bentuk dan besaran hubungan antar rekaman proses diagenesis serta kaitannya dengan komponen utama butiran karbonat akan diverifikasi di dalam penelitian ini. Komponen butiran karbonat ini merupakan variabel bebas, karena jenis proses diagenesis sangat bergantung pada kelimpahan komponen butiran karbonat ini.

Metode Penelitian

Guna mencapai tujuan tersebut, maka metode penelitian dilakukan dengan pengujian petrografi mikroskopis rinci terhadap 28 percontoh batugamping Formasi Baturaja terpilih, yang didahului dengan pembuatan peta lintasan dan kolom stratigrafi rinci. Penamaan batugamping yang
dipakai pada tulisan ini adalah penggolongan batugamping menurut Dunham (1962) dan Embry \& Klovan (1971). Verifikasi dengan metode statistik sederhana diperlukan guna mengetahui secara pasti keterkaitan hubungan proses diagenesis yang telah berlangsung sejak pengendapan, penimbunan, pengangkatan, dan penyingkapan batuan.

STRATIGRAFI

Secara stratigrafis umum, batuan di daerah penelitian menurut beberapa peneliti terdahulu (Gafoer drr., 1986 dan 1993) dialasi oleh batuan Pratersier, berupa granit, andesit-basal, batuan bancuh, metasedimen, dan batuan malihan. Secara tak selaras di atas batuan alas tersebut diendapkan batuan sedimen Tersier (Gambar 1), diawali oleh batuan gunung api Formasi Kikim yang tertindih tak selaras oleh batuan silisiklastika Formasi Talangakar. Pada kala Miosen Awal Formasi Talangakar tertindih selaras oleh Formasi Baturaja. Formasi Baturaja terdiri atas batugamping terumbu, kalkarenit dengan sisipan serpih gampingan dan napal. Tebal total formasi secara regional mencapai 300 meter, dan diendapkan di lingkungan laut dangkal hingga dekat terumbu. Selanjutnya, secara berturut-turut diendapkan batuan silisiklastika Formasi Gumai, Formasi Airbenakat, Formasi Muaraenim, Formasi Ranau, Formasi Kasai, dan aluvium.

Stratigrafi Lintasan Air Saka

Lintasan Air Saka merupakan alur sungai sepanjang sekitar $3,6 \mathrm{~km}$ yang berarah utara - selatan (Gambar 2). Singkapan batuan dijumpai terbatas karena tertutup oleh aluvium. Ketebalan total lapisan batuan terukur di lintasan ini mencapai 300 meter, termasuk batugamping Formasi Baturaja yang berketebalan mencapai 247 meter (Gambar 3). Singkapan batuan diawali oleh batuan sedimen klastika Formasi Talangakar. Hubungan langsung batuan sedimen klastika Formasi Talangakar dengan bagian bawah batugamping Formasi Baturaja selaras (Maryanto drr., 2005).

Bagian bawah Formasi Baturaja di lintasan Air Saka diawali oleh packstone yang terpilah buruk dengan pengarahan butiran ganggang berukuran mencapai 5 cm , dengan tebal lapisan 100-180 cm. Packstone
ini berkembang menjadi wackestone dengan tebal lapisan $10-200 \mathrm{~cm}$, selanjutnya mengasar menjadi floatstone yang pada beberapa lapisan terlihat terstilolitkan, terpilah sangat buruk, mengandung kepingan koral dan lithoklas yang berukuran mencapai 40 cm , dengan tebal lapisan 180-450 cm . Di antara lapisan floatstone ini tersisip bafflestone yang komponen biota utamanya adalah ganggang, koral dan bryozoa, dan matriks lumpuran dengan tebal lapisan 340 cm . Sisipan lainnya adalah rudstone berkomponen koral, bryozoa dan lithoklas yang berukuran mencapai 80 cm dengan tebal lapisan 460 cm . Bagian bawah batugamping Formasi Baturaja diakhiri oleh rangkaian lapisan batugamping bioklastika halus hingga sedang. Runtunan batuan diawali oleh grainstone berlapis dengan ketebalan $100-650 \mathrm{~cm}$, diikuti packstonewackestone berstruktur galian organisme datar dan tebal lapisan 10-80 cm. Packstone-wackestone ini kadang disisipi oleh mudstone lumpuran dengan tebal lapisan 10-70 cm (Foto 1).

Bagian tengah batugamping Formasi Baturaja di lintasan Air Saka tersingkap sangat terbatas. Batuan berupa bindstone yang berstruktur berbuku-buku, terstilolitkan, dengan tebal lapisan 1,2-2,6 meter. Fragmen koral, ganggang, dan bryozoa mendominasi bagian ini. Ke bagian atas, batuan masih berupa bindstone, berbuku-buku terstilolitkan dan termampatkan, komponen korai, ganggang, jarang bryozoa, dan fosil laín pada matriks dengan tebal lapisan $120-330 \mathrm{~cm}$.

Foto 1. Lapisan wackestone disisipi oleh mudstone, merupakan penyusun bagian bawah Formasi Baturaja Lokasi 107 Lintasan Air Saka.

Gambar 1. Peta Geologi daerah sekilar Muaradua, Sumatera Selatan (Gatoer et al., 1993) dan Iokasi lintasan penguikuran stratigrafi rinci di Air Saka.

Gambar 2. Peta pengukuran stratigrafi rinci di Lintasan Air Saka, OKU Selatan, Sumatera Selatan.

Gambar 3. Kolom stratigrafi rinci di Lintasan Air Saka, OKU Selatan, Sumatera Selatan.

Bagian atas batugamping Formasi Baturaja di lintasan Air Saka diawali oleh perlapisan batugamping wackestone-grainstone berlapis sedang hingga tebal 40 - 140 meter (Foto 2). Wackestone tersebut kadang berkembang menjadi floatstone dengan pengarahan butiran yang bagian atas lapisannya berkembang menjadi grainstone. Di antara perlapisan itu tersisip rudstone yang merupakan endapan gua (travertin) dengan ketebalan lapisan beragam hingga mencapai 360 cm . Sisipan lainnya adalah bindstone dengan tebal lapisan $80-320 \mathrm{~cm}$. Runtunan wackestonegrainstone tersebut mengakhiri pengendapan Formasi Baturaja di lintasan Air Saka.

Secara selaras di atas batugamping Formasi Baturaja terendapkan batuan sedimen klastika halus penyusun Formasi Gumai. Runtunan batuan berupa batupasir gampingan halus hingga sangat halus, berstruktur perarian sejajar, dengan tebal lapisan 80 180 cm . Batuan tersebut bersisipan batulumpur gampingan berstruktur perarian sejajar dengan tebal sisipan $40-80 \mathrm{~cm}$. Runtunan selanjutnya berupa batulempung berketebalan lapisan $20-180 \mathrm{~cm}$, berselingan dengan batupasir halus hingga sangat halus, berstruktur perarian sejajar dan silang-siur, dan berketebalan lapisan $20-140 \mathrm{~cm}$. Sisipan packstone-wackestone formasi Baturaja masih hadir di antara perlapisan batuan sedimen klastika tersebut, berstruktur perarian sejajar, mengandung fosil foraminifera berlimpah, dengan tebal lapisan $20-100 \mathrm{~cm}$.

PETROGRAFI

Dua puluh delapan percontoh terpilih batugamping telah diambil dari lintasan Air Saka untuk diuji secara petrogratis. Berdasarkan hasil uji petrografi rinci yang telah dilakukan, terlihat bahwa batuan karbonat di lintasan ini dapat dikelompokkan menjadi beberapa jenis, yaitu bioclastic wackestone, clayey bioclastic wackestone, bioclastic packstone, grainstone, bioclastic wackestone/floatstone, bioclastic packstone/floatstone, dan boundstone (Tabel 1). Komponen butiran karbonat hadir dengan jumlah cukup banyak di setiap percontoh batuan, terdiri atas bioklastika, intraklastika, dan sangat jarang pelet dan olit (Gambar 4).

Foto 2. Singkapan packstone yang berlapis sedang hingga tebal, merupakan penyusun bagian atas Formasi Baturaja. Lokasi 112 Lintasan Air Saka.

Komponen bioklastika selalu hadir di seluruh percontoh batugamping dengan jumlah cukup berarti. Jenis, ukuran, dan jumlah komponen bioklastika ini cukup beragam. Namun demikian, jenis fosil yang menguasai batuan, seperti moluska, ganggang merah, foraminifera, dan koral dapat diidentifikasi. Jenis fosil lain hanya sebagai ikutan yang jumlahnya kurang berarti.
Komponen intraklastika hadir di beberapa batuan, terutama batugamping yang berukuran sedang hingga kasar. Komponen ini berukuran kasar, tersebar tídak merata, dan terdiri atas batugamping terumbu, batugamping bioklastika, dan batugamping lumpuran. Komponen pelet hadir dengan jumlah sangat terbatas, meskipun hampir selalu dijumpai di semua batuan, dan komponen olit sangat langka dijumpai di dalam batuan. Pelet tersebut berupa butiran sangat halus yang kadang-kadang tergantikan.

Butiran terigen masih hadir pada beberapa percontoh batuan dengan jumlah terbatas dan tersebar tidak merata. Butiran ini terdiri atas kuarsa, felspar, kepingan batuan gunung api, kepingan batuan sedimen argilit, kepingan batuan malihan, kepingan batuan tak terperikan, glaukonit, fosfat, mika, mineral opak bijih, dan kepingan tumbuhan.

Matriks batuan hadir berupa lumpur karbonat dan kadang-kadang bercampur tidak terpisahkan dengan matriks mineral lempung. Namun demikian, pada beberapa percontoh terlihat bahwa mineral lempung tersebut telah tersegregasi akibat diagenesis, atau telah teroksidasi.

Tabel 1. Ringkasan Analisis Petrografi, Khususnya Batugamping Formasi Baturaja, di Lintasan Air Saka, Surnatera Selatan (Maryanto drr., 2005)

KODE PERCONTOH PEMERIAN	05 SM 102A	$\begin{gathered} 05 \\ \text { SM } \\ 102 \mathrm{~B} \end{gathered}$	$\begin{gathered} 05 \\ \text { SM } \\ 103 \end{gathered}$	$\begin{gathered} 05 \\ \text { SM } \\ 104 \end{gathered}$	$\begin{gathered} 05 \\ \text { SM } \\ 105 \end{gathered}$	$\begin{gathered} 05 \\ \text { SM } \\ 106 \end{gathered}$	$\begin{gathered} 05 \\ \text { SM } \\ 107 \mathrm{~A} \end{gathered}$	05 SM 107B	$\begin{gathered} 05 \\ \text { SM } \\ 107 \mathrm{C} \end{gathered}$	$\begin{gathered} 05 \\ \text { SM } \\ 108 \end{gathered}$	$\begin{gathered} 05 \\ \text { SM } \\ 109 \mathrm{~A} \end{gathered}$
Struktur	mo	mo	m	m	m	m	mo	m	mo	1.	m
Tekstur	bf	bf	bf	bf	bf	bf	cf	bf	bf	nc	nc
Pemilahan	P	p	p	p	p	p	p	p	P	-	-
Kemas	c	c	0	0	c	c	c	0	-	-	-
Uk. Butir rata-rata (mm)	0,35	2,40	0.1	0,35	1,80	0.45	2,80	0,90	0,30	-	-
Bentuk Butir	sr	a	8	si	sa	sr	a	Sa	5	-	-
Hubungan Butir	ple	plc	fp	fpl	pl	pl	plc	fpl	f	-	\cdot
Persentase komponen											
Butiran Karbonat											
Ganggang hijau	-	6,00	-	*	3,00	1.67	-	*	0,67	2,00	-
Ganggang merah	1,67	1,33	1,67	0.67	8,00	10,67	-	2,67	2,00	11,33	6,67
Bryosoa	1,33	1,67	1,00	-	4,67	1,33	1,33	3,00	1,33	2,00	8,00
Echinodermata	-	0,67	0,67	0,33	4,67	1,67	-	1,67	1,00	0,33	-
Koral	-	23,33	.	-	2,67	0,67	3,33	-	2,00	38,00	14,00
Foraminifera bentos	3,33	2,00	1,00	15,67	9,67	3.33	1,00	3,33	6,00	4,67	0.67
Foraminifera plankton	26,00	-	9.67	4,67	0,33	2,00	-	-	4,67	0,67	*
Brachiopoda	1,33	0,33	-	0,67	0,67	1,67	-	-	0,67	1,00	-
Moluska	2,33	2,67	1,33	2,67	1,67	4,00	0,67	2,00	2,67	3,00	1,33
Ostrakoda	0,67	0,33	-	1,33	-	0,67	-	0,67	1,67	1,00	.
Sponge-spicules	0.33		0,33	-	-	-	-	-	2,67	-	-
Jejak bioturtasi	1,33	.	1,33	*	1,33	*	-	0,67	-	- 6	*
Tulang ikan	-		.	*	-	-	*	-	0,67	0,67	-
Fosil tak terperi	4,67	2,67	4,67	5,00	10,67	4,00	3,33	6,00	4,67	3,00	12,00
Intraklasjekstraklas	1,67		2,33	-	3,33	5,33	81,33	- 0	-	-	-
Pelet/peloid	1.33		1.67	1.33	-	1.33	-	0,67	1.00	1.00	-
Olit/oncolit	-	-	-	-	-	-	-	-	-	-	-
Butiran Terigen											
Kuarsa	3,33	0,67	1,67	1,67	0,33	1.00	-	0,67	2,00	-	0,67
Felspar	2,33	-	0.67	0.67	.	-	-	0,33	-	-	-
Kepingin batuan	1.67	-	0,67	1.33	-	0,67	-	0,33	1,00	-	-
Glaukonit	2,00	-	1,33	0,67	-	-	-	-	-	-	-
Fesfat	-	-	0,67	0,67	-	-	-	-	-	*	*
Mineral opak	2,33	\bullet	1,00	0.67	-	1,00	*	-	0,33	*	-
Mika	-	-		.	*	.	-	-	-	-	-
Kepingan tumbuhan	-	-	-	-	-		.	-	-	-	-
Matriks											
Lumpur karbonat	18,00	14,00	25,00	24,33	31,33	12,00		7.00	43,33	19,33	8,00
Mineral lempung	.	.	.	5,00				.	10,67	-	3,33
Penyemen											
Ortosparit	6,33	6,00	3.00	2,67	3,33	6.00	5,00	3,00	-	6,00	-
Oksida besi	2,67	1.67	1,67	2,33	1,67	2,33	0,67	0,67	2,33	1,00	0,67
Lempung autigenik	-	-	1,33	-	-		-	1,00	2,00	-	0,67
Silika	-	-	-	-	1,33		-	1,33	1,33	-	-
Neomortisma											
Mikrosparit	4,00	10,33	32,33	18,00	6,00	25,00	-	56,33	2,00	2,00	*
- Sparit semu	-	24,67	2,00	3,00	2,00	4,00	-	5,00	-	-	34,67
Dolomit	1,33	-	6,33	4,00	0,67	3,00	-	.	*	-	-
Lumpur mikritisasi	1,33	0.67	.	-	1.00	4,00	2,00	0,67	2,67	1,00	1,00
Pirit	3,67.	.	-	1.00	-	-	.	1.00	-	-	-
Keporian											
Antarpartikel	*	*	*	*	0,33	-	-	-	-	*	-
Dalam partikel	1,33	-	-	-	0,33	1,00	0,67	0,67	-	-	-
Cetakan	0,67	-	0,67	0,33	-	-	-	-	-	-	*
Gerowong	2,67	1,00	2,33	1,33	1,00	1,67	0,67	1,33	0,67	1,00	3,00
Antarhablur	-	-	-	-	-	-	-	-	-	-	-
Shelter dan fenestral	-	-	*	-	-	-	-	-	-	-	-
Pertumbuhan terumbu	-	-	-	-	-	\checkmark	-	-	-	1,00	5,33
Retakan	-	-	-	-	-	\checkmark	-	-	-	-	-
Nama Batuan	BP	BP/F	BW	BW	BP^{*}	BP+	G/R	BW	CBW	B/Bi	B / Bi
Standar Mikrofasies /Zona Fasies	3/3	5/4	3/3	3/3	12/6*	10,7+	5/4	$9 / 7$	$9 / 7$	7/5	$7 / 5$

Geo-Resources

Tabel 1. Lanjutan

KODE PERCONTOH PEMERIAN	$\begin{gathered} 05 \\ \mathrm{SM} \\ 109 \mathrm{~B} \end{gathered}$	05 SM 110A	$\begin{gathered} 05 \\ \text { SM } \\ 110 \mathrm{~B} \end{gathered}$	$\begin{gathered} 05 \\ \text { SM } \\ 110 \mathrm{C} \end{gathered}$	$\begin{aligned} & 05 \\ & \text { SM } \\ & 111 \end{aligned}$	$\begin{gathered} 05 \\ \text { SM } \\ 112 \mathrm{~A} \end{gathered}$	$\begin{gathered} 05 \\ \text { SM } \\ 112 \mathrm{~B} \end{gathered}$	05 SM 112C	$\begin{gathered} 05 \\ \text { SM } \\ \text { 112D } \end{gathered}$	05 SM 112E	05 SM 112F
Struktur	b	b	mf	mo	m	mf	m	mo	b	b	m
Telsstur	nc	nc	bf	bf	bf	bf	bf	bf	nc	nc	bf
Pemilahan	-	-	p	p	vp	p	m	p	.	*	vp
Kemas	-	-	0	c	c	c	c	c	-	-	c
Uk. Butir rata-rata (mm)	-	-	1.60	1.80	0,90	1,60	1.80	1,20			1,60
Bentuk Butir	-	-	sa	sa	sa	a	89	sa	-	-	a
Hubungan Butir	-	\cdot	f	ples	ple	plc	plc	plc	-	-	pl
Persentase komponen											
Butiran Karbonat											
Ganggang hijau	9,00	14,33	1.33	*	-	-	-	1.00	1,33	1.33	-
Gangzang merah	0,67	4,00	2,33	1,33	4,33	3,67	2,33	2,00	2,33	2,67	5,00
Bryosoa	5,67	4,67	4,67	3,33	5,00	6,00	1,67	1,67	2,67	2,00	4,00
Echinodermata	-	0,33	1,67	0,33	1,00	0,67	2,67	-	-	0,67	0,67
Koral	26,67	14,00	3,33	5,33	6,33	4,00	-	4,33	33,00	31,33	2,00
Foraminifera bentos	1,33	3,67	5,67	4,00	4,33	2,33	0,67	2,67	2,33	1,67	5.67
Foraminifera plankton	-	0,67	0,67	0,67	0,33	-	-	-	1,00	-	1,33
Brachiopoda	0,67	2,33	0,67	1,00	0,67	3,00	-*	1,67	3,00	0,67	1,33
Moluska	2,00	3,00	6,33	8,33	5,67	9,33	47,67	4,67	2,67	3,33	10,67
Ostrakoda	0,67	2,67	0,67	1,00	1,00	0,67	.	1,67	1,33	0,67	0,67
Sponge-spicules		-	-	-	-	-	-	-	-	-	-
Jejak bioturtusi	1,33	0,67	1.67	1,33	1,33	3,00	0,67	\cdots	0,67	-	6,33
Tulang ikan		-	,	-	,	-	-	0,67	5,00	- 6	-
Fosil tak terperi	9,67	7.00	1,33	8,67	4,67	8,00	5,00	4,00	5,00	1,67	4,67
Intraklas/ekstraklas	-		6,00	10,67	21,67	9,33	2,67	5,00	-	-	9,67
Pelet/peloid	-	.	0,67	0,67	1,67	1,00	-	0.67	-	-	2,33
Olitooncolit			-	-	-	-	-	-	-	-	.
Butiran Terigen											
Kuarsa	0,33	0,67	-	0,33	-	-	0,33	-	-	0,33	0,67
Felspar	-	-	*	-	-	*	-	-	-	-	-
Kepingan batuan	-	-	-			*	-	-	-	-	1,33
Glaukonit	-	-	-			-	-	-	-	-	-
Fosfat	-	-		-	-	-	-	-	-	0,33	-
Mineral opak	*	-	0,33	0,33	0,67	*		-	-	-	-
Mika	-	-	-	,	-	.	.	-	-	-	-
Kepingan tumbuhan	-	.	-	-	-			0,67	-	0,33	-
Matriks											
Lumpur karbonat	20,67	17,33	44,00	20,33	21,67	21,67		50,33	21,33	8,00	14,00
Mineral lempung	-	.	-	-	.			.	4,67	4,67	4,00
Penyemen											
Oriosparit	5.67	8,00	6.67	9,33	5,67	7.33	27,33	4,33	12,67	10,00	3.00
Oksida besi	0,67	0,67	0,67	0,67	0,67	1.00	1.00	0,67	0,67	0,67	2,33
Lempung autigenik	-	-	-	-	-	-	0.67	-	-	0.67	0.67
Silika	1,33	1.00	1.33	1.00	-	1.67	1,00.	-	-	.	1.00
Neomorlisma											
Mikrosparit	2,00	4,00	4,00	8,00	5,67	6,67	*	5,33	2,00	14,00	6,33
Sparit semu	7.00	6,00	3.00	5,67	2,00	6,33	-	2,67	-	8,00	3,00
Dolomit	-	-	1.00	4,00	2,00	-	-	-	-	-	-
Lumpur mikritisasi	1,33	2,67	0.33	1,67	0,67	2,33	2,33	4,00	1,00	2,33	2,67
Pirit	0.67	-	-	0,33	0.33	0,67	$0,67$.	-	.	-	.
Keporian											
Antarpartikel	-	-	-	-	-	*	-	-	-	-	-
Dalam partikel	*	-	0,67	0,67	0,67	-	-	-	-	-	2,00
Cetakan	-	-	0,33	-	-	-	-	0,67	-	*	-
Gerowong	1,00	2,33	-	0,67	1.00	0,67	3,33	1,33	2,33	1.00	4,67
Antarkablur	-	-	-	-	-	-	-	-	-	1,67	.
Shelter dan fenestral	-	-	*	-	-	-	-	*	-	-	*
Pertumbuhan terumbu	1,67	-	-	-	-	-	-	-	*	2,00	-
Retakan	-	-	0,67	0,33	1,00	0,67	-	-	-	-	*
Nama Batuan	B / Bi	B/Bi	BW	BP	BP/F	BP/F	BG	BW/F	B / Bi	B / Bi	BP/F
Standar Mikrofasies / Zona Fasies	$7 / 5$	7/5	$9 / 7$	5/4	5/4	5/4	12/6	5/4	$7 / 5$	7/5	5/4

Tabel 1. Lanjutan

Gambar 4. Riingkasan komponen pernyusun batugamping Formasi Baturaja di lintasan Air Saka, OKU Selatan, Sumatera Selatan berdasarkan data petrografi (Maryanto dr., 2005).

Material penyemen selalu hadir di dalam batuan dengan jumlah sangat beragam. Penyemen utama batuan adalah ortosparit yang berasal dari berbagai lingkungan pembentukan. Penyemen lainnya berjumlah terbatas adalah oksida besi terutama mengisi rongga dan retakan batuan, mineral lempung autigenik, silika kuarsa, felspar, dan zeolit.

Material sekunder hasil neomorfisme, yaitu penggantian, penghabluran ulang, dan pendolomitan, selalu hadir di dalam batuan dengan jumlah sangat beragam sesuai dengan intensitas diagenesis. Komponen ini terdiri atas mikrosparit, sparit semu (pseudosporit), dolomit, lumpur pemikritan, bercampur pirit.

Keporian batuan bernilai buruk hingga sangat buruk. Jenis keporian primer yang teramati adalah antarpartikel, dalam partikel, pertumbuhan terumbu (growth framework), fenestral, dan shelter. Jenis keporian sekunder yang sering hadir adalah gerowong (vug), cetakan, retakan, dan antarhablur.

REKAMAN PROSES DIAGENESIS

Identifikasi komponen batugamping di bawah mikroskop polarisasi tidak selamanya dapat dilakukan dengan mudah. Sebagian atau kadangkadang seluruh komponen awal pada saat batuan diendapkan hilang atau rusak akibat proses diagenesis. Beberapa ahli yang telah mengulas mekanisme dan jenis proses diagenesis, antara lain Adams \& MacKenzie (1998), Bathurst (1975), Flugel (1982), James (1991), Longman (1981), Scholle (1978), Tucker \& Wright (1990), Railsback (2002), Gregg (2005), dan Kendall (2005). Prinsip utama ulasan proses diagenesis tersebut pada dasarnya sama, yaitu batugamping terpengaruh oleh proses diagenesis seiring dengan waktu pengendapan, penimbunan, pengangkatan, penyingkapan batuan, serta pengaruh perubahan air laut dan air tawar. Karakter rekaman proses diagenesis pada masing-masing lingkungan berbeda-beda, sehingga material asal batugamping pada saat batuan diendapkan dapat diruntut ulang kembali.

Penampakan Rekaman

Beberapa jenis proses diagenesis yang rekamannya teramati pada batugamping Formasi Baturaja antara lain bioturbasi, pengisian rongga fosil, penggantian, penyemenan, penghabluran ulang, pemikritan,
pendolomitan, pembentukan mineral autigenik, pemampatan, pelarutan, penstilolitan, dan peretakan (Tabel 2).

Penampakan bioturbasi teramati hanya pada beberapa percontoh batuan saja dengan jumlah sangat terbatas. Rongga jejak bioturbasi ini pada umumnya berukuran sangat halus (maksimal 0,25 mm) dan tersebar tidak teratur. Rongga jejak bioturbasi pasca pengendapan telah terisi kembali oleh material lumpur karbonat dan kadang-kadang bercampur dengan ortosparit membentuk struktur geopetal.
Seperti halnya penampakan jejak bioturbasi, rongga di dalam fosil pada umumnya juga terisi oleh lumpur karbonat. Fase pengisian lumpur karbonat ini berlangsung sesaat setelah pengendapan batuan, dengan proses tidak sempurna, sehingga meninggalkan keporian jenis dalam partikel di beberapa percontoh batuan. Pengisian rongga pasca pengendapan berlangsung di berbagai lingkungan, dan dapat dikatakan sebagai proses penyemenan batuan.
Rekaman proses penggantian teramati di seluruh percontoh batuan yang terbagi menjadi dua jenis, yaitu penggantian butiran dan penggantian matriks. Penggantian butiran tanpa fase pelarutan menghasilkan sparit semu berhablur mosaik anhedral yang pada umumnya berukuran hablur sedang mencapai $0,8 \mathrm{~mm}$ (Foto 3). Penggantian matriks lumpur karbonat membentuk mikrosparit berhablur mozaik hingga sukrosik granular anhedral berukuran sangat halus (Foto 4). Proses penggantian material ini berhubungan erat dengan proses pendơlomitan dan penghabluran ulang. Pendolomitan material berlangsung pada beberapa percontoh batuan, khususnya pada bagian terbawah dan teratas batugamping Formasi Baturaja.
Material penyemen selalu hadir di dalam batuan dengan jumlah sangat beragam. Penyemen utama batuan adalah ortosparit (Foto 5). Pada umumnya, ortosparit berasal dari lingkungan meteorik freatik, diikuti ortosparit lingkungan laut, ortosparit lingkungan penimbunan, dan sangat jarang ortosparit lingkungan meteorik vadose. Penyemen kedua adalah oksida besi yang hadir terbatas dengan bentuk dan penyebaran tidak teratur, terutama mengisi rongga dan retakan batuan. Mineral lempung autigenik kadang hadir sebagai penyemen, dan terkonsentrasi sebagai pengisi rongga pelarutan.

Geo-Resources

Penyemen lain adalah silika, dalam bentuk kuarsa, felspar, dan zeolit, yang hadir di lingkungan meteorik freatik, pasca penyemenan oleh ortosparit.
Material sekunder hasil neomorfisme, yaitu penggantian, penghabluran ulang, dan pendolomitan selalu hadir di dalam batuan dengan jumlah sangat beragam sesuai dengan intensitas diagenesis. Mikrosparit hadir sebagai pengganti lumpur karbonat, baik pada matriks maupun isian rongga fosil. Sparit semu merupakan hasil penghabluran
ulang komponen dengan kemas tidak terseleksi, yaitu butiran karbonat, lumpur karbonat, mikrosparit, dan ortosparit. Dolomit hadir terbatas dengan ukuran beragam sesuai dengan ukuran butiran atau hablur asal. Dolomit berhablur sangat halus anhedral mosaik granular hingga sukrosik sebagai pengganti matriks, sedangkan dolomit berhablur agak kasar mosaik anhedral sebagai pengganti butiran. Pirit hadir terbatas dengan penyebaran tidak teratur dan berukuran sangat halus anhedral.

Tabel 2. Ringkasan Rekaman Proses Diagenesis yang Teramati Pada Analisisis Petrograit Batugamping Formasi Baturaja di Lintasan Air Sala, Sumatera Selatan

KODE PERCONTOH	$\begin{gathered} \text { NAMA } \\ \text { BATUAN } \end{gathered}$	$\underset{\text { FZ }}{\text { SMF }}$	\% BK	PROSES DIAGENESIS																KETERANGAN
				A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	
05 SM 120	BW	3/3	10,33	1	3	3	3	1	p	2	1	3	1	2	2	1	2	1	1	Nama Ratuan: BW - Bicclastic wackestone
05 SM 118	BP	3/3	51,68	1	3	2	3	2	1	3	1	2	1	3	1	2	2	1	1	$\begin{gathered} \text { CBW }=\underset{\text { - Clayvy bioclastic }}{\text { wackestime }} \end{gathered}$
05 SM 117C	BW	3/3	36,32	\%	2	2	2	2	1	2	1	1	1	2	1	2	2	1	1	BP - Bioclastic packstome G - Grainstane
05 SM II2A	BP/F	5/4	51,00	2	2	3	2	2	2	3	1	2	2	1	2	2	2	1	2	BW/F - Bioclastic wackestione
05 SM 112B	BC	12/6	63,35	2	1	2	r	1	2	${ }^{3}$	1	1	2	1	2	2	2	1	2	/fiowstone BP/F - Bioclastic packstone
05 SM 112C	BP/F	5/4	30,02	2	2	3	2	2	2	3	1	1	2	1	2	2	2	1	1	$\begin{gathered} \text { / /foastione } \\ \mathrm{B} / \mathrm{Bi} \text { - Buwndstune/bindstone } \end{gathered}$
05 SM 113	BW	97	12,68	2	1	2	3	1	1	2	1	3	1	1	2	1	2	1	1	Fasies Mikro:
05 SM 112D	B / Bi	7/5	55,33	2	2	3	1	2	2	3	1	1	2	1	1	2	2	1	1	SMF - Standand micnofacies (Flugel, 1982)
05 SM IISA	BG	5/4	57,34	1	3	2	1	2	1	4	1	2	1	1	2	2	3	1	1	$\begin{aligned} & \text { FZ } \quad \text { - Facies sone } \\ & \text { (Wilson, 1975) } \end{aligned}$
05 SM 115B	BW/F	5/4	35,01	2	2	3	2	2	1	3	1	2	1	1	2	2	2	1	1	
$05 \mathrm{SM} \mathrm{I12E}$	B / Bi	7/5	46,01	1	2	3	2	2	1	3	1	2	2	1.	2	2	2	1	1	Proses Diagenesis: A $=$ Bioturbasi $B=$ Pengisian fosil
05 SM H12F	BP/F	5/4	54,34	2	2	3	3	2	1	2	1	1	2	1	2	2	2	1	1	$B=$ Pengisian fosil C $=$ Penggantian butiran
05 SM 111	BP/F	5/4	58,00	2	2	3	2	2	1	3	2	1	2	2	1	1	2	1	2	D = Penggantian lumpur $\mathrm{E}^{-}=$Penyemenan laut
05 SM 110C	BP	5/4	46,66	2	3	2	2	2	I	3	1	2	2	2	2	2	2	1	2	F = Penyemenan penimbunan G - Penyememan meteorik freatik
05 SM 110 B	BW	5/4	37,01	3	2	2	2	2	4	3	1	1	2	2	2	2	2		2	H - Penyemenan meteorik vadose 1-Penghabluran ulang
05 SM 110A	B/Bi	7/5	57,34	2	3	4	2	2	1	3	1	1	2	1	2	1	2	1	1	$\begin{aligned} & \mathrm{J}=\text { Pemikritan } \\ & \mathrm{K}=\text { Pendolomitan } \end{aligned}$
05 SM 109B	B / Bi	7/5	57,68	2	3	4	2	2	1	4	1	1	1	1	2	1	2	1	1	L = Autigetrik mineral M - Pemampatan
05 SM 109A	B / Bi	7/5	42,67	1	3	2	1	2	1	3	1	2	2	1	2	1	2	1	1	$\mathrm{N}=\text { Pelarutan }$
05 SM 108	B / Bi	7/5	68,67	1	3	2	2	2	1	3	1	1	2	1	2	1	2	1	1	$\mathrm{O}=$ Penstilolitan $\mathrm{P}=$ Peretakan/pengekaran
05 SM 107C	CBW	$9 / 7$	31,69	2	2	2	3	2	1	2	1	1	2	1	3	1	2	1	1	Intensitas Diagenesis:
05 SM 107B	BW	$9 / 7$	20,68	1	2	1	4	4	1	1	3	2	2	1	2	2	2	1	1	$\begin{aligned} & 1=\text { Tidak teramati } \\ & 2=\text { Lemah } \end{aligned}$
05 SM 107A	BG	5/4	90,99	1	1	3	1	1	1	3	1	2	2	1	2	2	2	1	2	$\begin{aligned} & 3=\text { Sedang } \\ & 4=\text { Kuat } \end{aligned}$
05 SM 106	$\mathrm{BP}+$	107	38,34	2	2	2	3	2	2	2	1	1	2	2	1	1	2	1	2	5 = Intensif
05 SM 105	BP*	12/6	50,68	2	2	2	3	1	1	2	1	2	2	2	2	2	2	1	2	* - Kompoesen matriks + - Kompceen kepingan
05 SM 104	BW	3/3	32,34	1	3	2	1	1	2	1	1	1	1	4	1	2	3	1	1	BK - Butiran Karbonat
05 SM 103	BW	3/3	25.67	1	3	2	3	1	1	2	1	1	1	3	2	2	3	1	1	
05 SM 102B	BP/F	5/4	41,00	1	2	4	3	1	2	2	1	3	2	1	1	2	2	2	2	
05 SM 102A	BP	3/3	46,32	1	4	2	3	3	2	1	1	1	1	1	2	2	3	1	1	

Rekaman proses pemampatan batuan terlihat nyata pada beberapa percontoh, khususnya pada batugamping yang terdukung butiran, yaitu packstone dan grainstone. Penampakan rekaman proses pemampatan ini dicirikan dengan bentuk

Foto 3. Sayatan pipih packstone yang memperlihatkan penggantian butiran pada percontoh $05 S M 110 c$. Kedudukan lensa nikol bersilang.

Foto 4. Sayatan pipih packstone - floatstone yang memperlihatkan fosil foraminifera bentos (Lepidocyclina sp.) Dan moluska tergantikan, serta lumpur karbonat tergantikan, pada percontoh 05SM112a. Kedudukan lensa nikol bersilang.

Foto 4. Sayatan pipih packstone - fioatstone dengan pengisian rongga fosil atau penyemenan, penggantian, dan pengekaran pada percontoh 05SM105. Kedudukan lensa nikol bersilang.
hubungan butir melengkung dan sangat jarang bergerigi. Proses pemampatan ini segera diikuti oleh proses penstilolitan di satu percontoh batuan. Penampakan rekaman proses penstilolitan dicirikan oleh pola pengarahan butiran karbonat yang berada dalam matriks lumpur karbonat tergantikan. Pengarahan butiran yang paling nyata terjadi pada komponen kepingan koral memanjang.

Proses pelarutan batugamping dapat terjadi pada berbagai lingkungan diagenesis, meskipun pada umumnya berlangsung di lingkungan meteorik vadose. Rekaman proses pelarutan dapat dijumpai pada hampir semua percontoh batuan yang diambil, meskipun berintensitas rendah. Proses pelarutan yang terjadi seringkali memilih kemas, yaitu pada matriks lumpur karbonat (Foto 6). Proses pelacutan tanpa seleksi kemas terjadi sangat terbatas. Hasil kedua proses pelarutan tersebut adalah keporian sekunder jenis gerowong yang merupakan perkembangan keporian primer jenis antarpartikel. Ukuran keporian yang dijumpai pada umumnya halus dan belum berhubungan antarsesamanya yang membentuk jenis keporian saluran، Beberapa rongga hasil pelarutan ini sebagian terisi kembali oleh ortosparit lingkungan meteorik, yang kadang bercampur dengan oksida besi, mineral lempung autigenik, dan silika kuarsa.

Sebagai konsekuensi umurnya yang Miosen Awal, Formasi Baturaja tentu telah mengalami beberapa kali proses tektonika. Rekaman proses tektonika yang paling nyata adalah hadirnya kekar dan retakan pada beberapa percontoh terkumpul. Kekar gerus hadir berupa kekar rambut yang memotong butiran dàn material lainnya, sedangkan retakan batuan

Foto 4. Sayatan pipih grainstone yang memperlihatkan jenis keporian gerowong (vug) hasil pelarutan semen di antara butiran pada percontoh 05SM115a. Kedudukan lensa nikol bersilang.

Geo-Resources

lebih banyak terjadi sebagaikegiatan biota tumbuhtumbuhan di permukaan sekarang ini. Kekar tersebut sebagian masih tetap kosong, meninggalkan jenis keporian retakan, dan sebagian lagi telah terisi oleh ortosparit lingkungan meteorik.

Verifikasi

Verifikasi data dengan metode pengujian statistik dilakukan untuk mengetahui bentuk dan besaran hubungan antar rekaman proses diagenesis yang teramati pada pengujian petrografi batugamping di Lintasan Air Saka. Pengujian statistik ini merupakan ukuran keeratan hubungan antara variabel x dan y di dalam suatu populasi tertentu. Kriteria keeratan hubungan antar variabel tersebut berdasarkan penggolongan menurut Hasan (2004), yaitu: kalau nilai $r=0$ maka kedua variabel tidak berhubungan, kalau nilai $r=-1$ maka kedua variabel berhubungan negatif sempurna, dan kalau nilai $r=1$ maka kedua variabel berhubungan positif sempurna. Kriteria keeratan hubungan berdasarkan interval koefisien korelasi, yaitu: $0,00<r<0,20$ sangat rendah, $0,40<r<0,40$ rendah, $0,40<r<0,60$ sedang, $0,60<r<0,80$ kuat, dan $0,80<r<1,00$ sangat kuat.

Seperti halnya alterasi pada suatu sistem geotermal, maka intensitas proses diagenesis pada batugamping dapat disebandingkan. Komponen
yang membentuk material sekunder, dikelompokkan berdasarkan penggolongan Browne (1978) yang mendasarkan persentase komponen sekunder dari total komponen primer dan sekunder. Menurut penggolongan tersebut, nilai $0-10 \%$ termasuk kondisi segar, 10-25 \% terdiagenesis rendah, 25-50 $\%$ terdiagenesis sedang, 50-75\% terdiagenesis tinggi, dan 75-100\% terdiagenesis intensif. Data pengelompokan yang didapatkan berskala ordinal. Korelasi regresi yang digunakan merupakan metode paling sederhana untuk data yang berskala ordinal. Berdasarkan penghitungan dengan software Statistica6, didapatkan nilai koefisien korelasi antar rekaman proses diagenesis (Tabel 3).

Intensitas rekaman proses diagenesis yang teramati tersebut bergantung pada komponen asal batugamping. Komponen utama batugamping yang dicoba untuk diuji adalah butiran karbonat (BK), karena komponen ini selalu hadir cukup banyak pada setiap percontoh batuan yang diuji. Model pengujian statistik nonparametrik yang digunakan pada pekerjaan ini berdasarkan data yang berskala ordinal. Hasil penghitungan nilai koefisien korelasi Spearman dan Kendall (Siegel, 1997), dengan catatan bahwa komponen butiran karbonat dianggap sebagai variabel bebas terlihat pada Tabel 4, Tabel 5, dan Gambar 5.

Tabel 3. Nilai Koefisien Korelasi Regresi Antar Rekaman Proses Diagenesis Batugamping Formasi Baturaja di Lintasan Air Saka. Sumatera Selatan

	(1)	(2)	(3)	(4)	(9)	(6)	(7)	(8)	(9)	(10)	(1)	(12)	(13)	(14)	(15)	(16)
Biotarbasi (1)	1,20	0,26	-0,72	-0,34	-0,02	-0,59	-0,3	0,06	Q,18	-0,04	-, 11	Q,13	9,14	a,11	0,26	0,04
Pengisian Fenll (2)	0,06	1,00	-0,41	0,02	-0,78	0,10	-0,17	0,64	-0,22	-0,14	-0,69	-0,34	0,56	-0,50	-0,22	-0,02
Pengzmilian Botiras (3)	-0,27	-0,41	1,00	0,01	039	0,13	-0,11	-0,19	0.27	0,18	0,43	0.26	0,18	0.26	-0,22	0,01
peesuanfian Lampur (4)	-0,34	0,02	0,01	1,90	-0,31	0.32	-0,58	0,03	-0,13	0,12	-0,28	-0,36	0,10	0,18	-0,0	0,03
Peayemeaan Liopkengzan Laut (5)	-0,02	-0.78	0,39	-0.31	1,00	-0,27	-0,04	-0,76	0.38	0,17	0,80	0,40	-0,35	0,40	0.38	0,08
Penyenemana Liaze Praimbusta (6)	$\rightarrow 0.59$	0,10	0.13	0,32	-0,27	1,00	0,26	0,27	-0,01	-0,16	-0,19	-0,01	-0,01	$-0,23$	-0,43	-0,15
Penyemenan Lime Meterik Fratik ()	-0,33	$-9,17$	$-0,11$	0,58	-0,04	0,26	1,00	0,02	-0,04	0,10	0,03	$-0,11$	-0,01	0,11	-0,13	-0,26
Penyenenenan Liug, Meteorik Vadose (\%)	-0,06	0,64	$-0,19$	0,03	-0,76	0,27	0,22	1,00	-0,33	-0,29	-0,53	-0,11	0,40	-0,36	-0,17	$-0,01$
Peoghtuturas ulang (9)	-0,18	-0,22	-0,27	-2,13	-0,38	-0,01	-0,04	-0,3	1,00	0,28	-0,24	$-0,11$	-0,19	0.31	-0,27	-0,19
Pemikritas (10)	-0,04	-0,14	0,18	0,22	Q, 17	-0,16	0,01	-0,29	0,28	1,00	0,20	-0,09	-0,25	0,63	-0,07	0,41
Pendolomitan (II)	-0,11	-0,69	0,43	-0,28	0,80	$-0,19$	0,03	-0,53	0.24	-0,20	1,00	0,64	-0,4	0,28	0,43	0,15
Mlaeral Autigenik (12)	-0,18	-0,34	0,26	-0,36	0.40	-0,01	-0,11	-0,11	-0,11	$-2,09$	0,64	1,00	-0,23	-0,00	,00,510	0,23
Pemampatas (13)	-0,14	0,56	-0,18	0,10	-0,50	-0,01	-0,01	0,40	-0,19	-0,25	-0,48	-0,23	1,00	-0,49	-0,28	-0,26
Pelarutan (1)	0,11	-0,50	0,26	0,18	0,40	-0,23	0,11	-0,36	0,31	0,6]	0,28	-0,03	-0,49	1,00	0,11	0,41
Peartiolitan (15)	0,26	-0,02	-0,02	-0,43	0.38	-0,43	$-9,13$	-0,17	-0,27	-0,07	0,43	a,51	-0,28	0,11	1,00	0,41
Peretakas (16)	0,04	-0,02	0,01	$-0,03$	2,08	$-0,15$	-0,26	-0,01	-0,19	0,41	0,15	0,23	-0,26	0,41	0,41	1,00

Tabel 4. Nilai Koefisien Korelasi Spearman (rs) Antara Komponen Butiran Karbonat dan Rekaman Proses Diagenesis Batugamping Formasi Baturaja di Lintasan Air Saka, Sumatera Selatan

	Vabid	Spearman	$\mathrm{T}(\mathrm{N}-2)$	P-lovel
Butiran Karbonat \& Bioturbasi	28	0,008390	0,64278	0,966202
Butiran Karbonat \& Pengisian Fosil	28	-0,064173	-0,32789	0,745617
Butiran Karbonat \& Penggantian Butiran	28	0,194302	1,01000	0,321804
Butiran Karbonat \& penggantian Lumpur	28	-0,332982	-1.80064	0,083372
Butiran Karbonat \& Penyemenan Lingkungan Laut	28	-0,037308	-0,19037	0,850500
Butiran Karbonat \& Penyemenan Ling, Penimbunan	28	-0,276398	-1,46649	0,154506
Butiran Karbonat \& Penyemenan Ling. Meteorik Freatik	28	0,492686	2,88692	0,007731
Butiran Karbonat \& Penyemenan Ling. Meteorik Vadose	28	-0,030639	-0,15630	0,877000
Butiran Karbonat \& Penghabluran ulang	28	-0,037934	-0,19357	0,848019
Butiran Karbonat \& Pemikritan	28	0,184571	0,95758	0,347094
Betiran Karbonat \& Pendolomitan	28	-0,256261	-1,35182	0,188076
Betiran Karbonat \& Mineral Autigenik	28	-0,019803	-0,10100	0,920329
Betiran Karbonat \& Pemampatan	28	-0,179897	-0,93251	0,359651
Butiran Karbonat \& Pelarutan	28	-0,139004	-0,71573	0,480537
Butiran Karbonat \& Penstilolitan	28	-0,059570	-0,30429	0,763330
Butiran Karbonat \& Peretakan	28	-0,013959	-0,07119	0,943795

Tabel 5. Nilai Koefisien Korelasi Kendall (tau) Antara Komponen Butiran Karbonat dan Relaman Proses Diagenesis Batugamping Formasi Baturaja di Lintasan Air Saka, Surnatera Selatan

	Volid	Spearman	T(N-2)	P-level
Butiran Karbonat \& Bioturbasi	- 28	0,003563	0,02660	0,978775
Butiran Karbonat \& Pengisian Fosil	28	-0,053303	-0,39806	0,690583
Butiran Karboaat \& Penggantian Butiran	28	0,144774	1,08117	0,279624
Butiran Karbonat \& penggantian Lampur	28	-0,254063	-1,89733	0,057784
Butiran Karbonat \& Penyemenan Lingkangan Laut	28	-0,029355	-0,21922	0,826475
Butiran Karbomat \& Penyemenan Ling, Penimbunan	28	-0,230969	-1,72487	0,084551
Butiran Karbosat \& Penyemenan Ling, Meteorik Freatik	28	0,383413	2,86331	0,004192
Butiran Karbonat \& Penyemenan Ling, Meteorik Vadose	28	-0,021223	-0,15849	0,874067
Butiran Karbonat \& Penghabluran ulang	28	-0,030902	-0,23077	0,817492
Butiran Karboant \& Pemikritan	28	0,153551	1,14671	0,251500
Butiran Karbomat \& Pendolomitan	28	-0,206042	-1,53872	0,123874
Butiran Karbonat \& Mineral Autigenik	28	-0,003985	-0,02976	0,976256
Butiran Karbonat \& Pemampatan	28	-0,149663	-1,11768	0,263704
Butiran Karbonat \& Pelarutan	28	-0,115642	-0,86361	0,387801
Butiran Karbonat \& Penstilolitan	28	-0,049558	-0,37010	0,711308
Butiran Karbonat \& Peretakan	28	-0,023841	-0,17804	0,858688

Gambar 5. Grafik distribusi intensitas proses diagenesis (keterangan jenis proses diagenesis lihat Tabel 2) dan hubungan korelasi regresi dengan komponen butiran karbonat pada batugamping Formasi Baturaja para lintasan Air Saka, Sumatera Selatan.

PEMBAHASAN

Proses diagenesis yang berpengaruh terhadap batugamping Formasi Baturaja telah berlangsung segera sesudah batuaan terendapkan. Proses diagenesis yang satu berlangsung bersamaan atau menyusul proses diagenesis lainnya. Dengan keadan ini, sudah tentu di antara masing-masing proses diagenesis tersebut akan saling berhubungan. Hasil pengujian dengan metode statistik nonparametrik sederhana memperlihatkan beberapa keeratan hubungan antar proses diagenesis tersebut (Tabel 3), meskipun nilai keeratan hubungan tersebut beragam.

Proses bioturbasi berhubungan sedang negatif $(-0,59)$ dengan penyemenan penimbunan, sedang-kan-keeratan hubungannya dengan penyemenan laut sangat rendah. Hal ini memperlihatkan bahwa proses bioturbasi pada suatu lapisan batugamping berlangsung segera setelah batuan tersebut tertindih lapisan lain pada pengendapan berikutnya. Kemungkinan kedua adalah rekaman proses penyemenan laut berlangsung, akan tetapi rekamannya telah rusak atau hilang karena proses diagenesis sesudahnya.
Pengisian rongga fosil berhubungan sedang hingga kuat negatif $(-0,41$ hingga $-0,78)$ dengan proses
penggantian butiran, penyemenan di lingkungan laut, pelarutan, dan pendolomitan. Sebaliknya, proses pengisian rongga ini berhubungan sedang hingga kuat positif (0,56 hingga 0,64) dengan proses pemampatan dan penyemenan meteorik vadose. Kisaran nilai hubungan ini menunjukkan bahwa proses pengisian rongga tidak efektif apabila terjadi penggantian butiran, penyemenan di lingkungan laut, dan pendolomitan. Proses pengisian rongga pada umumnya berlangsung jauh sebelum proses pelarutan terjadi. Dí lain pihak, proses pengisian rongga, termasuk penyemenan, pada umumnya terjadi di lingkungan diagenesis meteorik vadose.

Penggantian butiran yang terjadi di beberapa percontoh batuan menghalangi terjadinya proses pengisian rongga. Penggantian lumpur karbonat menjadi mikrosparit berhubungan sedang positif $(0,58)$ dengan penyemenan meteorik freatik, yang menunjukkan bahwa penggantian lumpur segera diikuti oleh proses penyemenan. Dengan demikian dapat dikatakan bahwa proses penggantian lumpur ini paling akhir berlangsung di lingkungan diagenesis penimbunan. Sebaliknya, penggantian lumpur berhubungan sedang negatif $(-0,43)$ dengan penstilolitan, yang menunjukkan bahwa rekaman penggantian lumpur sebagian hilang akibat proses penstilolitan batuan.

Selain berhubungan sedang negatif dengan pengisian fosil, penyemenan di lingkungan laut berhubungan sedang hingga kuat negatif ($-0,53$ hingga $-0,76$) dengan penyemenan di lingkungan meteorik vadose dan pemampatan. Keadaan ini mencerminkan bahwa rekaman proses penyemenan di lingkungan laut sebagian telah rusak atau hilang akibat penyemenan di lingkungan meteorik vadose atau pemampatan. Hal sebaliknya yang terjadi bahwa penyemenan di lingkungan laut berhubungan sedang hingga kuat positif (0,40 hingga 0,80) dengan proses pendolomitan, pembentukan mineral autigenik, dan pelarutan. Keadaan ini memperlihatkan bahwa semen karbonat dari lingkungan laut lebih sering terdolomitkan daripada semen dari lingkungan lainnya. Semen dari lingkungan laut pada saat terdolomitkan juga menghasilkan mineral autigenik, seperti lempung dan kuarsa anhedral. Bertambahnya semen dari lingkungan laut akan memperbesar kemungkinan terjadinya proses pelarutan. Penyemenan penimbunan, selain berhubungan sedang negatif dengan bioturbasi, juga berhubungan sedang negatif dengan penstilolitan batuan $(-0,43)$. Semen karbonat ortosparit dari lingkungan penimbunan sebagian hilang atau rusak akibat penstilolitan. Penyemenan dari lingkungan meteorik freatik hanya berhubungan sedang positif dengan penggantian lumpur, sedangkan dengan proses diagenesis yang lain berhubungan sangat rendah. Penyemenan di lingkungan meteorik vadose berhubungan sedang negatif $(-0,53)$ dengan pendolomitan. Dengan demikian dapat dikatakan bahwa dolomit dari lingkungan penimbunan, setelah mengalami pelarutan, tergantikan oleh ortosparit lingkungan meteorik vadose, khususnya berlangsung pada saat penyingkapan batuan.
Penghabluran ulang secara umum tidak berhubungan atau berhubungan rendah dengan proses diagenesis yang lain. Penghabluran ulang yang terjadi di dalam batugamping formasi Baturaja terjadi pada semua komponen atau dikenal sebagai penghabluran ulang kemas tak terseleksi (non selected fabric recrystallization). Pemikritan beberapa kepingan fosil lebih intensif berlangsung, dan diawali dengan proses pelarutan batuan. Nilai keeratan hubungan kedua proses diagenesis ini sedang positif $(0,63)$.

Pendolomitan lebih banyak terjadi apabila semen karbonat lingkungan laut dan pengantian butiran meningkat jumlahnya, sebaliknya tidak berlangsung
dengan baik pada bagian di dalam rongga fosil. Pendolomitan juga kurang efektif berlangsung pada batugamping yang-terkena proses pemampatan, dengan nilai keeratan hubungan $-0,48$. Pemampatan batuan ini juga menghalangi terjadinya pendolomitan dan pelarutan, dengan nilai keeratan hubungan 0,48 hingga $-0,49$.

Di lain sisi proses penstilolitan akan memacu pembentukan mineral autigenik, selain mempermudah terjadinya proses peretakan batuan. Nilai keeratan hubungan proses diagenesis tersebut sedang positif (0,41 hingga 0,51). Selain itu, proses peretakan batuan lebih banyak terjadi pada batuan yang mengalami pelarutan, terstilolitkan, dan butiran karbonatnya termikritkan, dengan nilai keeratan hubungan 0,41.
Dari antara komponen batugamping yang dijumpai di lintasan penelitian, butiran karbonat merupakan komponen yang selalu hadir cukup banyak. Komponen butiran karbonat ini pada umumnya dikuasai oleh bioklastika atau fosil. Dengan demikian komponen butiran karbonat ini dipakai sebagai variabel bebas di dalam penentuan nilai koefisien korelasi berdasarkan rumus Spearman (Tabel 4) dan rumus Kendall (Tabel 5). Berdasarkan perhitungan dengan metode statistik nonparametrik terlihat bahwa kelimpahan butiran karbonat berhubungan dengan beberapa jenis proses diagenesis. Nilai keeratan hubungan butiran karbonat yang paling nyata, dengan koefisien korelasi 0,49 atau sedang positif, adalah dengan proses penyemenan meteorik freatik. Nilai koefisien korelasi rendah negatif, antara $-0,25$ hingga $-0,33$, terjadi antara komponen butiran karbonat dengan pendolomitan, penyemenan penimbunan, dan penggantian lumpur.

KESIMPULAN

- Batugamping formasi Baturaja di lintasan Air Saka berketebalan terukur mencapai 247 meter, dan terdiri atas rangkaian perlapisan batugamping bioklastika berbutir halus-sedang yang kadang-kadang pasiran serta lempungan. Batugamping tersebut terendapkan pada kala Miosen Awal, menindih selaras batuan silisiklastika Formasi Talangakar, dan ditindih secara selaras oleh batuan silisiklastika Formasi Gumai.
- Batugamping bioklastika yang dijumpai terdiri atas beberapa jenis, yaitu bioclastic wackestone, clayey bioclastic wackestone, bioclastic packstone, grainstone, bioclastic wackestone/floatstone, dan bioclastic packstone/floatstone, serta batugamping nonklastika boundstone.
- Rekaman proses diagenesis yang teramati pada batugamping Formasi Baturaja meliputi bioturbasi, pengisian rongga fosil, penggantian, penyemenan, penghabluran ulang, pemikritan, pendolomitan, pembentukan mineral autigenik, pemampatan, pelarutan, penstilolitan, dan peretakan. Proses diagenesis ini terbukti masih menunjukkan hubungan antar sesamanya, meskipun nilai keeratan hubungannya sangat rendah hingga sedang.
- Komponen butiran karbonat berhubungan sedang positif dengan penyemenan meteorik freatik, serta berhubungan rendah negatif, antara $-0,25$ hingga $-0,33$, dengan pendolomitan, penyemenan penimbunan, dan penggantian lumpur.

Ucapan Terima Kasih

Penulis mengucapkan terima kasih kepada Dr. Hermes Panggabean, M.Sc. atas saran dan masukan ilmiah demi lebih baiknya tulisan ini. Ucapan terima kasih juga disampaikan kepada Sdr. Herwin Syah dan Sdr. Heriyanto, keduanya dari Geo/Labs PSG atas bantuannya dalam mendigitasi gambar dan pemotretan sayatan pipihm

DAFTAR ACUAN

Adams A.E. and MacKenzie, W.S., 1998. A Color Atlas of Carbonate Sediments and Rocks Under the Microscope. John Wiley \& Sons, New York, Toronto, 180 p.
Bathurst, R.G.C., 1975, Carbonate Sediments and Their Diagenesis, Second Enlarged Edition. Elsevier Scientific Publishing Company, New York, Amsterdam, Oxford, 658 p.
Bishop, M.G., 2000. South Sumatra Basin Province, Indonesia: The Lahat/Talangakar Cenozoic Total Petroleum System. Open file report 99-50S US Geological Survey. <http://geology.cr.usgs.gov/energy/ WorldEnergy/OF99-50S/ occurrence.html > (27/03/2006).
Browne, P.R.L., 1978. Hydrothermal Alteration in Active Geothermal Fields. Annual Convention of Earth Planetary Science, pp. 229-250.
Dunham, R.J., 1962. Classification of Carbonate Rocks According to Depositional Textures. In Ham, W.E (ed), Classification of Carbonate Rocks. The American Association of Petroleum Geologists Memoir 1, pp. 108-121.
Embry, A.F. and Klovan, J.E., 1971. A Late Devonian Reef Tract on North-Eastern Banks Island, North West Territory. Bulletin of Canadian Petroleum Geology 19, pp. 730-781
Flugel, E., 1982. Microfacies Analysis of Limestones. Springer-Verlag, Berlin, Heidelberg, New York, 633 p.
Gafoer, S., Amin, T.C., dan Poernomo, J., 1986. Peta Geologi Lembar Lahat, Sumatera, Skala 1:250.000, Pusat Penelitian dan Pengembangan Geologi, Bandung.
Gafoer, S., Amin, T.C., dan Pardede, R., 1993. Peta Geologi Lembar Baturaja, Sumatera, Skala 1:250.000. Pusat Penelitian dan Pengembangan Geologi, Bandung.
Gregg, J.M., 2005. Photographic Gallery of Carbonate Petrology. <Http://web.umr.edu/~greggjay/ Carbonate_Page/photogal.html > (27/2/2006).
Hasan, I., 2004. Analisis Data Penelitian dengan Statistik. Bumi Aksara, Jakarta.
James, N.P., 1991. Diagenesis of Carbonate Sediments, Notes to Accompany a Short Course. Geological Society of Australia, 101 p.

Kendall C.G.St.C., 2005. Carbonate Petrology. In Kendall C.G.St.C. and Alnaji, N.S. (developers). USC Sequence Stratigraphy Web. < http://strata.geol.sc.edu/ seqstrat.html>(27/02/2006).
Limbong, A., Maryanto, S., Sutjipto, R.H., Wiryosuyono, S., dan Riyadi, 2004. Penelitian Batuan Karbonat Baturaja, Sumatera Selatan. Laporan Teknis Intern, Pusat Penelitian dan Pengembangan Geologi, Bandung, tidak terbit.
Longman, M.W., 1981. A Process Approach to Recognizing Facies of Reef Complexes. Society of Economic Paleontologists and Mineralogists Special Publication 30, pp. 9-40.
Maryanto, S., 2005. Sedimentologi Batuan Karbonat Tersier Formasi Baturaja di Lintasan Air Napalan, Baturaja, Sumatera Selatan. Jurnal Sumber Daya Geologi 15, pp. 83-101.
Maryanto, S., Polhaupessy, A.A., Rachmansyah, dan Limbong, A., 2005. Penelitian Reservoir Batuan Karbonat Formasi Baturaja di Daerah Muaradua, Sumatera Selatan. Laporan Teknis Intern, Pusat Survei Geologi, Bandung, tidak terbit.
Railsback, L.B., 2002. An Atlas of Pressure Dissolution Features. <http://www.gly.uga.edu/railsback/ PDFindex1.html > (20/02/2006).
Scholle, P.A., 1978. A Color Illustrated Guide to Carbonate Rock Constituents, Textures, Cements, and Porosities. American Association of Petroleum Geologists Memoir 27, Tulsa, 241 p.
Scrutton, M.E., 1976. Modern Reefs in the West Java Sea. Indonesian Petroleum Association Special Publication, p. 14-36.
Siegel, S., 1997. Statistik Nonparametrik untuk I/mu-ilmu Sosial. PT. Gramedia, Jakarta.
Tucker, M.E. and Wright, V.P., 1990. Carbonate Sedimentology, Blackwell Scientific Publications, Oxford, London, Edinburg, Cambridge, 482 p.

Naskah diterima $:$	13 September 2006	
Revisiterakhir	$:$	4Januari 2007

