PENAFSIRAN REKAMAN SEISMIK PANTUL DANGKAL SALURAN TUNGGAL DI PERAIRAN KABAENA, MUNA DAN BUTON, SULAWESI TENGGARA

I Nyoman Astawa, P. Astjario, dan I.K.G. Aryawan
Pusat Penelitian dan Pengembangan Geologi Kelautan
JI. Dr. Djundjunan No. 236, Bandung 40174

Abstract

SARI Mandala Geologi Sulawesi Timur yang biasa disebut sebagai Lajur Ofiolit Sulawesi Timur, terdiri atas batuan ultramafik dan sedikit batuan sedimen penutup jenis pelagos, Batuan ultramafik ini diperkirakan merupakan batuan tertua dan alas di Mandala Sulawesi Timur, yang diduga berumur Kapur Awal. Satuan ini bersentuhan secara tektonik dengan batuan Mesozoikum dan Paleogen, dan secara tak selaras tertindih oleh batuan sedimen tipe molasa Neogen dan Kuarter.

Beberapa lintasan seismik penelitian dasar laut ini melalui kawasan perairan Pulau Kabaena, Muna, dan Pulau Buton. Lintasan ini dilakukan untuk mendapatkan gambaran tentang tatanan geologi bawah dasar laut antara ketiga pulau tersebut dan untuk mengetahui sebaran batuan yang tersingkap di setiap pulau-pulau tersebut. Berdasarkan perbedaan konfigurasi internal reflektor yang dikaitkan dengan batuan yang tersingkap di darat, maka dapat diinterpretasikan sebaran batuan tersebut di dasar laut. Interpretasi ini tentunya lebih akurat jika dapat dikorelasikan dengan data pemboran lepas pantai guna meyakinkan kebenaran interpretasi konfigurasi internal reflektor pada rekaman seismik pantul dangkal.

Kata Kunci : mandala, tektonik, seismik, interpretasi, Buton

Abstract

East Sulawesi terrane, generally called East Sulawesi ofiolite, consists of ultramafic rock underlying pelagic sediment as a top layer. The rock is interpreted as a basement rock in the East Sulawesi Terrane which was formed during early Cretaceous. This ultramafic rock tectonically contacted with Mesozoicum and Paleogen ones, and unconformably overlied by molasse sediment type on the top.

A number of single channel seismic profiling has been carried out and passing through between Kabaena, Muna, and Buton islands. Based on outcropping and distribution of rock units on those three islands, the seismic lines were made to get a clear geological setting under the seafloor. Differentiation of internal configuration reflector of the seismic records which interrelated to rock unit on the islands have been interpreted very clearly. The study of seismic single channel records will be more accurate if it is correlated to the offshore drilling data in order to make an estimation of internal

 cofiguration reflectors to be definitely correct.Keywords : terrane, tectonic, seismic, interpretation, Buton

PENDAHULUAN

Kawasan Sulawesi Tenggara merupakan salah satu daerah yang memiliki tatanan struktur geologi yang unik dan menarik untuk dikaji dan diteliti. Pulau Buton dan Pulau Muna merupakan gugus kepulauan terdepan dari sederet pulau kecil di sebelah timurnya. Kumpulan Kepulauan Tukangbesi-Buton ditafsirkan sebagai mikrokontinen (platform) yang aktif bergerak ke arah barat laut karena aktivitas sesar yang disebut sebagai Hamilton Fault di timur laut Buton. Kelurusannya masih tampak menerus hingga Sulawesi, sebagaimana Anjungan Sula di Sulawesi Tengah, hingga terjadi tumbukan dengan
lengan tenggara Pulau Sulawesi yang terjadi pada akhir Kapur Awal hingga Paleogen (Sikumbang drr.,1995).

Struktur geologi yang aktif dan ditemukannya percampuran antara batuan Pratersier hingga Kuarter, serta batuan ofiolit mencirikan bahwa daerah penelitian merupakan kawasan tumbukan antara Mandala Geologi Sulawesi Timur dan Anjungan Tukangbesi-Buton. Mandala Geologi Sulawesi Timur dicirikan oleh gabungan batuan ultramafik, mafik, dan malihan, sedangkan Anjungan Tukangbesi-Buton dicirikan oleh kelompok batuan sedimen tepian benua yang beralaskan batuan malihan.

Sesar di kawasan Pulau Buton bagian selatan pada umumnya berarah timur laut - barat daya, di Pulau Buton tenggara berarah utara - selatan, dan berarah barat laut - tenggara di daerah Pulau Buton bagian Utara. Sesar utama mempunyai arah sejajar dengan arah memanjangnya tubuh batuan Pratersier.
Tektonika di kawasan Pulau Buton berkembang sejak Pratersier dan berlanjut sampai sekarang. Pada Akhir Oligosen, Anjungan Buton bertubrukan dengan mintakat Sulawesi Tenggara yang menyebabkan terjadinya perlipatan kuat dan sesar naik pada batuan Pramiosen. Untuk waktu yang cukup lama, kawasan ini mengalami genang laut dan sedimentasi hingga terbentuk beberapa formasi. Pada PlioPlistosen kegiatan tektonik kembali aktif yang mengakibatkan terlipatnya batuan Praplistosen dan mengaktifkan kembali sesar-sesar yang telah terbentuk sebelumnya (Simandjuntak drr., 1993).
Makalah ini membahas hasil penelitian seismik pantul dangkal saluran tunggal untuk mengetahui gambaran mengenai penyebaran batuan dan struktur geologi bawah dasar laut. Lokasi penelitian terletak di perairan Sulawesi Tenggara (Gambar 1).

GEOLOGI REGIONAL

Provinsi Sulawesi Tenggara, khususnya di kawasan penelitian, dari sebaran batuannya terdiri atas dua Mandala Geologi yaitu Mandala Sulawesi Timur dan Mandala Anjungan Tukangbesi-Buton (Sukamto, 1975b).

Mandala Geologi Sulawesi Timur yang biasa disebut sebagai Lajur Ofiolit Sulawesi Timur (Simandjuntak, 1986), terdiri atas batuan ultramafik dan sedikit batuan sedimen penutup jenis pelagos. Batuan ultramafik terdiri atas peridotit, serpentinit, diorit, werlit, harzburgit, gabro, basal, mafik malih, dan magnetit. Batuan ultramafik ini diperkirakan merupakan batuan tertua dan alas di Mandala Sulawesi Timur, yang berumur Kapur Awal (Simandjuntak, 1986). Satuan ini bersentuhan secara tektonik dengan batuan Mesozoikum dan Paleogen, dan secara tak selaras tertindih oleh batuan sedimen tipe molasa Neogen dan Kuarter. Nama lain yang pernah digunakan untuk satuan ini adalah batuan ultrabasa dan basa (Sukamto, 1975a).
Batuan sedimen pelagos yang menutupi batuan ofiolit adalah Formasi Matano. Formasi ini terdiri atas kalsilutit dan setempat terdapat sisipan rijang dan batusabak. Satuan ini tersingkap di tengah Pulau Kabaena dengan ketebalan kurang lebih 100 m .
Di daerah penelitan ditemukan juga batuan malihan, yang disebut sebagai Kompleks Pompangeo. Batuan malihan ini bersentuhan secara tektonik dengan batuan ultramafik. Batuan malihan Kompleks Pompangeo terdiri atas berbagai jenis sekis, diantaranya sekis mika, klorit, mika-grafit, kuarsa-mika, sekis glaukofan, dan sekis yakut-amfibolit, dan setempat genes, horenfel dan eklogit. Umur satuan ini belum diketahui secara pasti, tetapi diduga tidak lebih tua dari Mesozoikum. Batuan malihan ini tersebar sangat luas di Pulau Kabaena (Simandjuntak drr., 1993).

Banyak pakar geologi, di antaranya Wiryosujono dan Hainim (1975), Smith (1983), dan Sikumbang drr. (1995) yang secara khusus telah melakukan penelitian di daerah Mandala Anjungan TukangbesiButon ini dengan berbagai tujuan.

Gambar 1. Peta lokasi penelitian.

Batuan tertua di Pulau Buton adalah suatu kompleks batuan malihan yang meliputi Komplek Mukita dan Komplek Lakansai yang berumur Paleozoikum (Pratrias). Kompleks Mukita tersusun oleh batuan malihan sekis, filit, dan batu gamping kristalin, sedang kompleks Lakansai tersusun oleh runtunan batuan malihan berderajat rendah, yaitu batuan malihan kuarsit mikaan yang berselingan dengan filit dan batu sabak. Kompleks tersebut sering dikenal sebagai Doole Phylite (Smith, 1983), dan dapat disenabahkan dengan batuan malihan berderajat rendah di Pulau Buru, yaitu Formasi Rana (Hartono dan Tjokrosapoetro, 1984).

Batuan yang tersingkap di kawasan pesisir Pulau Sulawesi Bagian Tenggara dan Pulau Kabaena adalah Mandala Sulawesi Timur yang terdiri atas batuan ultramafik dan Formasi Matano, batủan malihan Kompleks Pompangeo, Formasi Meluhu, dan aluvium. Batuan ultramafik yang tersebar cukup Iuas di Pulau Kabaena, biasa disebut juga sebagai batuan ultrabasa dan basa.

Satuan ultramafik ini bersentuhan secara tektonik (sesar) dengan batuan berumur Mesozoikum dan Paleogen serta tertindih batuan sedimen tipe molasa yang berumur Neogen dan Kuarter secara tidak selaras.

Kompleks Pompangeo adalah batuan malihan yang bersentuhan tektonik dengan batuan ultramafik dan satuan batuan lainnya. Kompleks batuan ini tersebar sangat luas di Pulau Kabaena bagian tengah. Umurnya belum diketahui secara pasti tetapi ditafsirkan tidak lebih tua dari Mesozoikum, dengan ketebalan yang sulit ditentukan, tetapi diduga lebih dari 1000 meter.

Formasi Meluhu merupakan satuan sedimen tertua pada Mandala Anjungan Tukangbesi-Buton yang tersingkap di pesisir barat Pulau Kabaena dan Sulawesi Tenggara bagian selatan. Formasi Meluhu bersentuhan tektonik (sesar) dengan batuan ultramafik. Aluvium yang banyak tersebar di kawasan pesisir Pulau Sulawesi Bagian Tenggara bagian timur dan pesisir barat Pulau Muna. Terumbu karang banyak tumbuh di kawasan pesisir Pulau Sulawesi dan tersingkap hampir di seluruh Pulau Muna.

Menurut Smith (1983) batuan Mesozoikum yang terdapat di Pulau Buton dapat dibagi menjadi empat satuan, yaitu Formasi Winto yang disusun oleh perselingan serpih, batupasir, konglomerat, dan
batugamping; bercirikan sedimen klastika daratan dan karbonat, berumur Trias Atas, Formasi Ogena yang disusun oleh batugamping pelagos bersisipan klastika halus dan batugamping pasiran, sebagian berbitumen atau diimpregnasi oleh aspal, berumur Jura Awal; Formasi Rumu yang disusun oleh perselingan batugamping merah kaya fosil, batulumpur, napal, dan kalkarenit, berumur Jura Akhir, dan Formasi Tobelo yang disusun oleh kalsilutit, berlapis baik, bebas bahan daratan, kaya radiolaria, berumur Kapur. Komplek ini dikenal sebagai Turumbia Sequence.
Smith (1983) dan Sikumbang drr. (1995), menerangkan bahwa Formasi Winto berumur Trias Atas, yang terdiri atas sedimen klastika terigen, karbonat klastika, dan pelagos. Sedimen klastika terigen tersebut membentuk runtunan flysh like deposit, yang merupakan perselingan serpih, batupasir, dan batugamping yang diendapkan dalam lingkungan outer shelf to basinal depths. Selaras di atas Formasi Winto adalah Formasi Ogena yang berumur Jura Awal yang terdiri atas batugamping berlapis baik, kadang-kadang berselingan dengarf napal, dan diendapkan dalam lingkungan outer shelf to basinal depths. Selaras di atas Formasi Ogena adalah Formasi Rumu yang terdiri atas kalsilutit, napal, batu lumpur, dan kalkarenit lempungan yang berumur Jura Atas. Formasi ini diendapkan pada lingkungan neritic to bathyal depths. Formasi Ogena ditindih secara tidak selaras oleh Formasi Tobelo. Formasi tersebut terutama tersusun oleh kalsilutit dengan sisipan rijang, dan di beberapa tempat disertai buncak rijang.
Batuan sedimen Neogen menutupi sebagian besar Pulau Buton yang terdiri atas dua formasi, yaitu: Formasi Tondo berumur Miosen Tengah, dan Formasi Sampolakosa berumur Miosen Atas - Pliosen Awal. Sedimen klastika terdiri atas konglomerat, batu pasir kerikilan, setempat terdapat batupasir, batulanau, dan batulempung yang merupakan runtunan ciri turbidit. Sikumbang drr. (1995) berpendapat bahwa sedimen klastika tersebut di atas diendapkan dalam cekungan Lasalimu, sedangkan perselingan batupasir, batulanau, dan batulempung diendapkan dalam cekungan Langkalome. Secara keseluruhan, sedimen klastika Formasi Tondo ini ditafsirkan sebagai endapan kipas bawah laut inter-outer submarine fan dan merupakan sedimen gravity flows
pada lingkungan bawah laut yang diendapkan dalam lingkungan neritik hingga batial. Di atas batuan Formasi Tondo terletak secara selaras Formasi Sampolakosa yang terdiri atas napal Globigerina dan sisipan kalkarenit berlapis (Wiryosujono dan Hainim, 1975; Sikumbang drr., 1995). Sebaran batuan Formasi Sampolakosa ini menutupi hampir sebagian Pulau Buton. Umur dan lingkungan pengendapan Formasi Sampolakosa ini adalah Miosen Akhir - Pliosen Akhir, dan diendapkan dalam lingkungan pengendapan dalam batial hingga neritik luar.
Formasi Sampolakosa ditutupi secara tidak selaras bersudut oleh satuan batugamping terumbu Kuarter. Hubungan ketidakselarasan tersebut didasarkan pada indikasi kemiringan dalam Formasi Sampolakosa dengan sudut 10° 30°, yang memperlihatkan lipatanlipatan yang jelas dan kemiringan perlapisan batu gamping terumbu dari $10^{\circ}-20^{\circ}$ yang lebih mirip disebabkan oleh pengangkatan aktivitas lipatan. Tetapi Smith (1983) berpendapat bahwa hubungan Formasi Sampolakosa dengan batugamping terumbu adalah perubahan fasies. Perkembangan batugamping ini sangat baik, dan dapat dijumpai di sepanjang pantai Pulau Buton dan Pulau Muna. Singkapan terbaik adalah di Tanjung Lombe, Tanjung Labokeh, dan Desa Kondawa.

METODE

Metode yang digunakan dalam penelitian ini adalah metode positioning dan geofisika. Metode posisi kapal menggunakan peralatan baringan (optik), sistem satelit navigasi sederhana Decca dan radar Decca. Dengan metode ini kita dapat membuat peta lintasan sesuai dengan yang kita rencanakan (Gambar 2).
Metode seismik menggunakan peralatan seismik pantul dangkal saluran tunggal berupa satu unit peralatan sparker, dan satu unit peralatan Uniboom. Metode ini digunakan untuk mengetahui kedalaman

Keterangan:
Lokesi Intasan set smili yong diamplikan

Gambar 2. Peta lintasan seismik.

laut, dan ketebalan perlapisan batuan bawah laut, berdasarkan karakteristik internal reflektornya yang ditunjang oleh data geologi di sekitarnya, sehingga dapat ditafsirkan kondisi geologi bawah laut daerah penelitian.
Kăpal hidrografi KRI "Jalanidhi" milik Janhidros membawa para peneliti dan seperangkat alat seismik melintasi kawasan Selat Buton, Poleang, Tiworo, dan Muna untuk melakukan rekaman seismik pantul dangkal saluran tunggal, guna mengetahui gambaran tentang tatanan struktur dan geologi bawah permukaan dasar laut.

Dengan kecepatan kapal yang kurang lebih 7 knot, dapat dihasilkan kualitas rekaman yang cukup baik. Perangkat seismik yang digunakan adalah Uniboom dengan Iuaran energi 150-300 Joule. Akan tetapi kualitas rekaman akan lebih tajam jika kecepatan kapal peneliti dikurangi hingga mencapai 4 knot . Hal ini akan disesuaikan dengan jenis peralatan yang akan digunakan, yaitu perangkat seismik Sparker dengan luaran energi 600-1000 Joule, seperti yang dilakukan pada kawasan Selat Butung dan Wowoni.

Beberapa lintasan penelitian dasar laut ini melalui kawasan Pulau Sulawesi, Pulau Kabaena dan Pulau Muna. Lintasan ini dilakukan untuk mendapatkan gambaran tentang tatanan geologi bawah dasar laut antara ketiga pulau tersebut, dan untuk mengetahui sebaran batuan yang tersingkap pada masingmasing pulau.

HASIL DAN PEMBAHASAN

Hasil penafsiran rekaman seismik Uniboom di Selat Tiworo dapat dibagi menjadi tiga runtunan, yaitu runtunan A, B, dan C , dimana masing-masing runtunan dibatasi oleh suatu reflektor yang kuat dan menerus. Runtunan A konfigurasi internal reflektornya semichaotic. Jika dikaitkan dengan geologi regional dan jenis batuan yang tersingkap di bagian daratnya, maka runtunan ini diduga dapat disebandingkan dengan batuan sekis. Runtunan B konfigurasi internal reflektornya chaotic. Jika dikaitkan dengan geologi regional dan jenis batuan yang tersingkap di bagian daratnya, diduga runtunan ini dapat disebandingkan dengan kelompok ofiolit. Dilihat dari gambaran rekaman seismiknya, runtunan B menerobos runtunan A . Runtunan C konfigurasi internal reflektornya adalah paralel hingga semiparalel, diduga runtunan ini dapat disebandingkan dengan batuan sedimen berupa pasir atau pasir lumpuran. Runtunan D konvigurasi internal reflekltornya paralel dan merupakan runtunan yang termuda di Selat Tiworo (Gambar 3).
Hasil penafsiran rekaman seismik sparker di perairan Baubau, dapat dibagi menjadi dua runtunan, yaitu runtunan B dan C . Pada runtunan B , konfigurasi internal reflektornya chaotic, dan dikaitkan dengan batuan yang tersingkap di bagian daratan Bau-bau, sehingga diduga runtunan ini dapat disebandingkan dengan kelompok ofiolit, sedangkan runtunan C konfigurasi internal reflektornya semichaotic hingga semi pararel dan dikaitkan dengan batuan yang tersingkap di daratan Bau-bau, sehingga diduga runtunan ini dapat disebandingkan dengan batu gamping yang tererosi (Hadikusumo drr., 1984) seperti terlihat dalam (Gambar 4).

Pada rekaman seismik di Selat Wowoni, yang konfigurasi internal reflektornya bersifat kacau (chaotic), diduga runtunan ini dapat disebandingkan dengan kelompok ofiolit. Di samping itu pada rekaman ini terlihat adanya indikasi sesar normal yang aktif, karena pada rekaman seismik terlihat sesarnya menembus hingga sedimen Kuarter (Gambar 5).
Dari hasil interpretasi semua rekaman seismik dapat dibuat peta sebaran batuan dan struktur geologi bawah laut daerah penelitian (Gambar 6). Adapun rinciannya adalah sebagai berikut :

- Struktur geologi berupa sesar normal terdapat di bagian timur laut daerah penelitian, tepatnya di Selat Wowoni dengan arah hampir utara selatan, dan di bagian barat daya daerah penelitian, tepatnya antara Selat Poleang dengan Selat Muna dengan arah barat daya timur laut. Jika dikaitkan dengan struktur dan tektonik regionalnya, arah sesar normal di daerah penelitian sama dengan arah sumbu perlipatan tua.
- Sebaran runtunan yang diduga sebagai aluvium, menempati daerah paling luas di daerah penelitian, lebih kurang 55 persen dari seluruh daerah penelitian, tepatnya di Selat Buton, Selat Tiworo, sedikit di Selat Poleang dan di Selat Muna.
- Sebaran runtunan yang diduga sebagai batugamping menempati lebih kurang 30 persen dari seluruh daerah penelitian, tepatnya sedikit di Selat Muna dan sebagian besar di Selat Buton.
- Sebaran runtunan yang diduga sebagai batuan ofiolit menempati lebih kurang 10 persen dari seluruh daerah penelitian, tepatnya di sebelah timur laut Pulau Kabaena.
- Sebaran runtunan yang diduga sebagai batuan sekis menempati lebih kurang 5 persen dari seluruh daerah penelitian, tepatnya di bagian utara Selat Poleang.

Gambar 3. Hasil rekaman seismik uniboom di Selat Tiworo dengan penalsirannya.

Gambar 5. Hasil relaman Sparker 600 Joule di Selat Wowoni memperlihatkan adanya struktur sesar normal.

Gambar 6. Peta sebaran batuan dan struktur dangkal bawah laut.

KESIMPULAN

Panjang lintasan seismik yang diperoleh untuk dikorelasikan dengan geologi regional daerah penelitian adalah sebagai berikut: di Selat Poleang, Tiworo, dan Muna lebih kurang 351 km , sedangkan di Selat Buton dan Wowoni sepanjang 337 km .

Hasil pengolahan data seismik pantul dangkal saluran tunggal yang diperoleh di daerah penelitian, dapat dibagi menjadi tiga runtunan, yaitu runtunan A, B, dan C. Runtunan A diduga dapat disebandingkan dengan batuan sekis, runtunan B diduga dapat disebandingkan dengan kelompok ofilit, sedangkan runtunan C diduga dapat disebandingkan dengan batuan sedimen berupa
gamping, pasir, dan lumpur. Di samping pembagian runtunan pada rekaman seismik, juga terdapat struktur geologi berupa sesar normal seperti terlihat pada Gambar 4 dan 5.

Ucapan Terima Kasih

Dengan tersusunnya makalah ini hingga layak untuk diterbitkan, penulis mengucapkan terima kasih kepada Bapak Kepala Pusat Penelitian dan pengembangan Geologi Kelautan, atas kepercayaannya untuk mengikuti ekspedisi Snellius II di wilayah Indonesia bagaian timur, serta rekanrekan lainnya yang tidak dapat kami sebutkan satu persatu.

ACUAN

Hadikusumo, S., Lubis S., Darwis N., Astawa, I.N., Hartosukoraharjo, S., 1984. Laporan Penyelidikan Seismik Pantul Dangkal Di Daerah Perairan Kepulauan Muna, Kabaena dan Buton, Sulawesi Tenggara. Pusat Pengembangan Geologi Kelautan, Bandung, tidak dipublikasikan.
Hartono, HMS dan Tjokrosapoetro S., 1984. Peta Geologi Lembar Buru,Maluku, Skala 1:250.000. Pusat Penelitian dan Pengembangan Geologi, Bandung
Sikumbang, N., Sanyoto P., Supandjono R.J.B., dan Gafoer S., 1995. Peta Geologi Lembar Buton, Sulawesi Tenggara. Pusat Penelitian dan Pengembangan Geologi, Bandung
Simandjuntak, T.O., 1986. Sedimentology and tectonic of the collision complex in the east arm of Sulawesi, Indonesia. PhD thesis, University of London, London, tidak dipublikasikan.
Simandjuntak, T.O., Surono dan Sukido, 1993. Peta Geologi Lembar Kolaka, Sulawesi, Pusat Penelitian dan pengembangan Geologi, Bandung.
Smith, R.B., 1983. Sedimentary and tectonics of a Miocene collission complex and overlying late orogenic clastic stata : Buton island, Eastern Indonesia. Unpubl. Ph. D. thesis, University of California, Santa Cruz.
Sukamto, R., 1975a. Peta Geologi Indonesia Lembar Ujung Pandang, Direktorat Geologi Bandung.
Sukamto, 1975b. The structure of Sulawesi in the light of plate tectonic. Paper presented in the Regional Conference of Geology and Mineral Resources, SE Asia, Jakarta.
Wiryosujono, S. dan Hainim, J.A., 1975. Cenozoic sedimentation in Buton island, Southeast Sulawesi. Proc. Reg. Conf. Geol. Min. Res. S.E. Asia. p. 109119.

[^0]
[^0]: Naskah diterima : 28 September 2006
 Revisi terakhir : 8Desember 2006

