PENYEBARAN SEDIMEN MENGANDUNG MINERAL BERAT DI PANTAI DAN PERAIRAN BAGIAN SELATAN BANYUWANGI

Ediar Usman
Pusat Penelitian dan Pengembangan Geologi Kelautan
JI. Dr. Junjunan No. 236 Bandung 40174 ,
Telp./Fak. 022.6017887, Email: ediarusman@yahoo.com

Abstract

SARI Perairan bagian selatan Banyuwangi terletak di lereng bagian selatan rangkaian Pegunungan Selatan Jawa, dan termasuk ke dalam daerah cekungan busur muka (fore arc basin) yang kaya potensi mineral berat. Mineral berat tersebut merupakan hasil aktivitas gunung api sepanjang Pegunungan Selatan Jawa yang telah tertranspor dan diendapkan di sepanjang pantai selatan dan dasar laut Jawa. Analisis percontoh sedimen pantai dan dasar laut bagian selatan Banyuwangi menunjukkan kandungan mineral berat, terutama pasir besi yang cukup besar. Mineral berat tersebut terdapat dalam pasir yang didominasi oleh fraksi halus hingga kasar, yaitu: pasir(S), pasir lanauan (zS), lanau pasiran (sZ), dan pasir kerikilan (gS). Fraksi-fraksi ini tersebar dari pantai hingga ke lepas pantai. Beberapa percontoh sedimen yang dianalisis menunjukkan kandungan mineral beratnya mencapai $80-100 \%$ berat, Kadar Fe pada magnetit di sepanjang pantai selatan Banyuwangi adalah antara $6,8 \%$ $30,6 \%$, dan di laut adalah antara $3,3 \%-27,4 \%$. Hasil interpretasi rekaman seismik menunjukkan ketebalan rata-rata sedimen mengandung mineral berat tersebut mencapai 20 meter dari permukaan dasar laut.

Kata kunci: sedimen dasar laut, mineral berat, pasir besi, perairan bagian selatan, Banyuwangi

Abstract

Territorial waters of southern part of Banyuwangi are located in the southern slope of Southern Mountains of Jawa, included in fore arc basin which is very rich in heavy minerals. The heavy minerals are the result of volcanic activity along the Southern Mountains of Jawa. Its products have been transported and deposited along the south coast and sea floor of the Southern Waters of Jawa.

Results of analysis of sediments collected from the coastal area and sea floor in the southtern part of Banyuwangi, indicate high content of heavy mineral especially magnetite. The heavy minerals which are present within sands are dominated by fine to coarse fractions, i.e: sand (S), silty sand (zS), sandy silt (sZ) and gravelly sand (gS). They are distributed from coastal plain to offshore area. Some samples show that the content of heavy minerals range from 80 to 100% in weight. Rate of Fe content within magnetite along the south part of Banyuwangi ranges between 6,8 and $30,6 \%$, whereas that on the sea between 3,3-27,4\%. Result of seismic record interpretation shows that thickness of the sediment containing the heavy minerals is approximately 20 meters from sea floor.
Keywords: sea floor sediment, heavy mineral, magnetite, southern part of waters, Banyuwangi

PENDAHULUAN

Salah satu kebijakan Pemerintah Kabupaten Banyuwangi adalah menggali potensi sumber daya kelautan di kawasan pantai dan laut (Badan Perencanaan dan Pertambangan Daerah Banyuwangi, 2004). Upaya yang dilakukan oleh Pemerintah Kabupaten Banyuwangi belakangan ini adalah menggali sumber daya mineral. Keinginan tersebut cukup beralasan karena secara geologis, pantai dan perairan bagian selatan merupakan daerah vulkanik yang kaya dengan mineral berat.

Bagian Selatan Banyuwangi yang termasuk kedalam rangkaian Pegunungan Selatan Jawa merupakan rangkaian pegunungan yang kaya akan produk vulkanik, seperti mineral berat terutama magnetit (pasir besi); sebagian sudah dieksploitasi, seperti di pantai selatan Sukabumi (Jawa Barat) dan selatan Cilacap (Jawa Tengah). Di samping itu, batuan terobosan sebagai pembawa mineral berat di selatan Banyuwangi adalah granodiorit, diorit, dan dasit (Sapei dkk., 1992).

Geo-Resources

Mineral berat yang terdapat di pantai dan laut adalah mineral letakan dengan batuan sumber berupa batuan vulkanik bersusunan andesitik dan basaltik yang kaya akan mineral mengandung unsur besi (Sutisna, 2006). Akibat proses pelapukan, mineral berat mengandung unsur besi yang kaya magnetit (pasir besi) terlepas dari batuan induknya, kemudian mengalami transportasi oleh sungai ke pantai dan laut.

Hasil pemetaan sebaran sedimen pantai dan dasar laut di bagian selatan Banyuwangi menunjukkan penyebaran sedimen pasir mengandung mineral berat yang cukup besar. Mineral berat yang umum terdapat di pantai dan perairan bagian selatan Banyuwangi tersebut adalah magnetit, ilmenit, hematit, limonit, rutil, piroksen, dan zirkon (Novico dkk., 2004).

Kandungan pasir besi di sepanjang pantai dan laut bagian selatan Banyuwangi tersebut perlu diteliti lebih lánjut untuk mengetahui ketebalan dan penyebaran ke lepas pantai (offshore). Hasil analisis menunjukkan hampir seluruh percontoh mengandung pasir mulai fraksi halus sampai kasar dengan ketebalan mencapai 20 meter. Beberapa percontoh yang dianalisis menunjukkan kandungan mineral
berat dengan kisaran antara 80-100\% berat. Adanya sebaran sedimen pasir mengandung mineral berat di pantai tersebut mengidentifikasikan pula bahwa penyebarannya melampar hingga ke lepas pantai. Oleh sebab itu pemetaan potensi ke lepas pantai sedimen tersebut perlu dilakukan.

Kandungan mineral berat ini merupakan potensi yang cukup besar untuk menjawab keinginan Pemerintah Kabupaten Banyuwangi mengembangkan potensi sumber daya mineral di masa mendatang.

Lokasi penelitian terletak pada koordinat antara $113^{\circ} 48^{\prime}-114^{\circ} 24^{\prime}$ BT dan $08^{\circ} 30^{\prime}-08^{\circ} 48^{\prime}$ LS. Secara geografis, daerah penelitian termasuk kedalam beberapa wilayah perairan kecamatan, yaitu: Kecamatan Pesanggaran, Bangorejo, Purwoharjo, dan Kecamatan Tegaldlimo, Kabupaten Banyuwangi, Provinsi Jawa Timur (Gambar 1).

Daerah penelitian mencakup kawasan pantai dan perairan bagaian selatan Kabupaten Banyuwangi dengan panjang garis pantai mencapai $141,51 \mathrm{~km}$ dan luas perairan lebih kurang 51,138 ha atau sekitar $511,38 \mathrm{~km}$ persegi. Wilayah perairan termasuk kedalam wilayah Samudra Indonesia.

Gambar 1. Peta lokasi penelitian

Tujuan tulisan ini untuk membahas data geologi kelautan mengenai kondisi geologi regional, kondisi dasar laut (morfologi dan sebaran sedimen) dan keterdapatan dan penyebaran sumber daya mineral, baik vertikal maupun horizontal di pantai dan perairan selatan Kabupaten Banyuwangi dan sekitarnya. Data tersebut diharapkan dapat mendukung rencana inventarisasi dan pengembangan sumber daya mineral oleh Pemerintah Daerah Banyuwangi.

GEOLOGI REGIONAL

Tulisan mengenai geologi perairan bagian selatan Banyuwangi belum banyak dipublikasikan, terutama menyangkut litologi, tektonik, dan stratigrafi. Untuk mendapatkan pemahaman kondisi geologi perairan bagian selatan Banyuwangi, maka perlu terlebih dahulu mempelajari kondisi geologi kawasan pantai dan sekitarnya. Publikasi yang tersedia saat ini adalah Peta Geologi Lembar Jember, Jawa, skala 1:100.000 yang mencakup daerah Jember dan Banyuwangi (Sapei dkk., 1992).

Berdasarkan fisiografi regional Jawa Tengah dan Jawa Timur yang disusun berdasarkan perbedaan elemen tektonik penampakan pada citra, daerah penelitian terletak pada Lengan Bagian Selatan Pegunungan Selatan Jawa (Sidarto dkk., 1999).

Secara morfologis, daerah penelitian termasuk kedalam beberapa satuan morfologi, yaitu: pegunungan, perbukitan, dan dataran (antar pegunungan dan dataran pantai). Daerah pegunungan membentuk beberapa tinggian dan kerucut gunung api. Daerah perbukitan umumnya tertutup hutan tropis dan perkebunan, sedangkan di daerah dataran dan lembah (antar gunung) umumnya banyak terdapat permukiman dan persawahan.

Sungai-sungai yang mentranspor sedimen dan mineral ke arah pantai dan perairan bagian selatan Banyuwangi umumnya mengalir dari daerah Pegunungan Selatan Jawa ke arah laut Samudra Indonesia. Pola aliran sungai adalah mendaun sejajar dan memencar dengan sifat periodik dan berair pada saat musim hujan (Sapei dkk., 1992).

Batuan tertua yang tersingkap di daerah penelitian adalah Formasi Merubetiri yang terdiri atas perselingan breksi gunung api, lava, dan tuf. Di bagian atas formasi ini terdapat Anggota Batugamping yang terdiri atas batugamping bersisipan batugamping tufan dan napal. Satuan ini
diduga berumur Oligosen Akhir - Awal Miosen Tengah. Formasi Merubetiri menjemari dengan Formasi Sukamade dan Formasi Batuampar. Formasi Batuampar terdiri atas batupasir, konglomerat, breksi, dan bersisipan batulempung. Semua batuan ini diterobos oleh granodiorit, diorit, dan dasit sebagai pembawa mineral ke arah dataran rendah, pantai, dan laut.

Batuan termuda adalah Aluvium dan Endapan Kipas Argopuro yang menutupi satuan batuan lebih tua.

Struktur yang berkembang adalah lipatan dan sesar. Struktur lipatan dengan arah sumbu barat daya timur laut dan barat - timur, secara umum membentuk antiklinorium yang terdiri atas lipatanlipatan kecil dengan sumbu lipatan menyelinap (plunging) dan sifatnya rencong. Struktur sesar yang terbentuk umumnya adalah bagian sesar bongkah Pegunungan Jawa Timur Bagian Selatan.

Di bagian selatan Banyuwangi, paling tidak terjadi dua periode tektonik yang menghasilkan struktur geologi. Periode pertama terjadi pada Kala Miosen Tengah berupa pengangkatan yang diikuti oleh penerobosan granit dan granodiorit yang kaya mineral berat dan sulfida. Pengangkatan ini disertai pula oleh penyesaran pada Formasi Merubetiri, Formasi Sukamade, dan Formasi Batuampar, sehingga terbentuk sesar turun berarah barat daya timur laut. Periode kedua terjadi pada Kala PlioPlistosen yang menghasilkan sesar geser jurus dan sesar turun dengan arah barat laut-tenggara yang diikuti oleh kegíatan gunung api yang terus berlangsung hingga saat ini.

METODE PENELITIAN

Pemeruman (pengukuran kedalaman laut)

Hingga saat ini belum ada kegiatan pemetaan batimetri secara terperinci di perairan selatan Banyuwangi. Data kedalaman yang ada saat ini adalah data kedalaman regional. Oleh sebab itu, dengan menggunakan metode pemeruman diharapkan akan diperoleh data kedalaman dasar laut, dan selanjutnya dapat dibuat peta batimetri yang akan menjadi dasar dalam pemetaan selanjutnya.

Kegiatan pemeruman adalah kegiatan untuk mengetahui kedalaman dasar laut dan morfologinya dengan menggunakan prinsip-prinsip penjalaran gelombang suara di dalam air laut. Peralatan yang
dipergunakan adalah Echosounder jenis Odom Hydrotrac yang dilengkapi dengan tow fish 100 Khz . Data posisi direkam setiap 0,5 detik dan ditampilkan pada peta dengan interval 10 menit. Hasil pengukuran terekam pada kertas sounding dalam bentuk profil, dan titik kedalamannya akan tercatat secara otomatis. Semua data kedalaman akan diolah secara digital dalam bentuk tampilan peta batimetri dan gambaran morfologi kondisi dasar laut. Pola kedalaman dasar laut akan mengggambar-kan morfologi dasar laut.

Pemercontohan dan Analisis Besar Butir

Kegiatan pemercontohan sedimen pantai dilakukan secara manual dengan mengambil sedimen secara langsung (hand specimen). Ke arah laut kegiatan pemercontohan dilakukan pada perairan hingga mencapai 7 km dari garis pantai ke arah samudra pada kedalaman mencapai 250 meter. Peralatan yang dipergunakan untuk pemercontohan sedimen dasar laut adalah pemercontoh comot (grab sampler) menggunakan mesin penarik (winch), katrol, dan tali baja. Peralatan tersebut ditempatkan di belakang kapal.

Selanjutnya analisis besar butir (grain size analysis) dilakukan dengan memisahkan berat asal 100 gram (tanpa cangkang). Pemisahan butir dilakukan mulai dari fraksi -2,0 phi hingga 4,0 phi, dan 4,0 phi hingga 8,0 phi setelah melalui proses pengeringan.

Data tersebut kemudian diolah pada komputer dengan menggunakan program Sel, Kum, dan Kummod untuk mendapatkan beberapa parameter, antara lain: X (phi), pemilahan (sorting), skewness, kurtosis, serta komposisi kerikil, pasir, lanau, dan lempung (lumpur). Klasifikasi sedimen disusun berdasarkan klasifikasi Folk (1980) dengan memperhatikan parameter persentase kandungan butiran yang terdapat pada setiap 100 gram sedimen.

Analisis Mineral Berat

Analisis mineral berat di laboratorium dilakukan dengan menggunakan larutan bromoform dan magnet. Hasil analisis kedua metode tersebut dijumlahkan untuk mendapatkan persentase mineral berat. Analisis mineral berat dalam bromoform adalah sebanyak 2 gram berat 3 phi, maka untuk menghitung berat pada nonbromoform juga dihitung berdasarkan perbandingan dengan jumlah dalam bromoform terhadap mineral berat 3 phi yang tidak dianalisis dalam bromoform. Demikian juga
perhitungan secara keseluruhan adalah dengan penjumlahan mineral berat hasil analisis dalam bromoform 3 phi dan perhitungan non-3 phi berdasarkan persentase perbandingan dengan total berat asal. Untuk mendapatkan lokasi kemungkinan sedimen mengandung mineral berat (magnetit) di lapangan, diacu pedoman teknis eksplorasi pasir besi yang disusun oleh Pusat Sumber Daya Geologi (2006).

Data sebaran dan ketebalan sedimen di bawah dasar laut diperoleh dengan menggunakan metode seismik pantul saluran tunggal (single channel reflection seismic). Peralatan menggunakan tipe sparkerray 3 elektroda EG\&G/267A, dibentangkan 20 meter di belakang kapal berjarak 4 meter terhadap streamer. Energi gelombang 500 joule, sapuan 1 detik/sweep setiap 1 detik ledakan, ambang frekuensi 400-4000 Hz dan sinyal diperkuat dengan TVG amplifier TSS 307. Hidrofon menggunakan jenis multi elemen streamer benthos direkam pada graphic recorder EPC/1086.

Prinsip kerjanya penjalaran gelombang suara di dalam air laut, dan waktu perambatan gelombang suara yang dilepas sampai dipantulkan kembali oleh lapisan sedimen/batuan, dan diubah menjadi jarak/ketebalan. Penafsiran data seismik pantul menggunakan prinsip-prinsip seismik stratigrafi, yaitu pengenalan terhadap ciri-ciri reflektor batas atas, batas bawah, dan bagian dalam (internal reflector) setiap unit seismik (Priyono, 2000). Selanjutnya pengenalan dan penamaan ciri-ciri reflektor mengacu pada Sangree \& Wiedmier (1979) dan Sherif (1980). Sementara untuk mengetahui ciriciri reflektor pada batuán dasar (Sekuen A) dan sedimen permukaan (Sekuen B) serta batas antara keduanya mengacu pada penafsiran Ringis (1993), yaitu selaras (concordance), sejajar (parallel), bergelombang putus-putus (wavy), perlapisan terpotong-potong (hummocky), pengisian (channel fill) dan longsoran (s/ump), serta bidang pepat erosi (erosional truncation).

HASIL PENELITIAN

Morfologi Dasar Laut

Data kedalaman, selain untuk menentukan daerah lembah dan punggungan sebagai daerah akumulasi mineral berat, juga untuk menentukan posisi sedimen mengandung mineral berat terhadap kedalaman laut.

Saat ini kedalaman perairan selatan Banyuwangi yang dipergunakan dalam berbagai publikasi adalah data batimetri regional. Daerah itu belum banyak dipetakan secara terperinci, sehingga pemetaan kedalaman secara langsung perlu dilakukan. Hasil pemetaan kedalaman di perairan bagian selatan Banyuwangi dapat memberikan gambaran mengenai morfologi dasar laut (Gambar 2).

Perkembangan kedalaman secara umum mengikuti pola garis pantai berarah barat - timur mulai kedalaman 10 - 50 meter. Perubahan morfologi mulai terjadi pada kedalaman lebih dari 50 meter yang ditandai oleh bentuk lembah-lembah tertutup (sub-marine depression) pada kedalaman antara 75 hingga 100 meter. Bentuk lembah pada umumnya bulat memanjang berarah barat - timur, dan terdapat di lepas pantai Teluk Rajegwesi, Teluk Pancamaya, dan Teluk Grajagan. Di bagian barat Teluk Grajagan terdapat morfologi lembah dengan kedalaman mencapai 300 meter dengan dua lembah. Lembah tersebut diisi oleh lanau pasiran dengan komposisi utama butiran berukuran pasir halus - kasar berwarna abu-abu kehitaman, kaya mineral magnetit, dan tidak mengandung cangkang.

Penyebaran Sedimen Dasar Laut Mengandung Mineral Berat

Penyebaran sedimen pantai (BP) dan dasar laut (BL) dapat membantu dalam menentukan daerah yang diperkirakan mengandung mineral berat. Hasil pengambilan percontoh sedimen memperlihatkan secara megaskopis sedimen mengandung mineral berat, umumnya didominasi oleh bentuk fisik berwarna hitam mengkilat, berbutir sedang, dan dapat diketahui secara langsung dari hand magnet.

Analisis tekstur sedimen dilakukan terhadap fraksi butiran tanpa cangkang berdasarkan persentase fraksi besar butir mengacu pada klasifikasi Folk (1980). Pengolahan data dilakukan dengan menggunakan program Sel, Kum, dan Kummod dengan memperhatikan parameter x (phi), pemilahan, skewness, kurtosis, kerikil, pasir, lanau, dan lempung diperoleh jenis tekstur sedimen (Tabel 1).

Selanjutnya berdasarkan klasifikasi di atas diperoleh beberapa satuan tekstur sedimen pantai dan dasar laut di daerah penelitian, yaitu: pasir (S), pasir lanauan (zS), lanau pasiran (sZ), pasir kerikilan (gS), dan kerikil pasiran (sG) - (Gambar 3).

Luas daerah sebaran sedimen yang dapat dipetakanpada penelitian ini adalah 51,138 ha dan luas masing-masing tekstur sedimen tersebut adalah lanau pasiran 27,590 ha, pasir lanauan 20,350 ha, pasir 2,066 ha, dan pasir kerikilan 1,132 ha.

Pasir

Pasir memiliki sifat fisik umumnya berwarna hitam dan putih kekuningan, tersusun oleh mineral hitam dan pecahan cangkang (koral), bersifat urai dengan luas 2,066 ha. Persentase kandungan masingmasing fraksi pada sedimen pasir adalah: kerikil 0 $2,5 \%$, pasir $90,2-99,9 \%$, lanau $0,1-9,8 \%$, dan tanpa lempung.
Di sepanjang pantai selatan Banyuwangi, sedimen pasir berwarna hitam dan pasir kekuningan mendominasi hamparan pantai dengan penyebaran yang luas terutama di daerah Klungkung, Grajagan, Pancer, Rajegwesi, dan Sukamade.

Di daerah lepas pantai, endapan pasir bercampur dengan pecahan terumbu karang, yang mendominasi hasil percontoh di laut. Namun bila dilakukan pemisahan terumbu karang seperti pada analisis grain size, maka sedimen tersebut hanya berupa pasirsaja.

Pasir Lanauan

Pasir lanauan memiliki sifat fisik umumnya berwarna hitam (pasir besi) dan abu-abu hingga keputihan (pasir terumbu dan sedikit kuarsa), tersusun oleh mineral hitam dan pecahan terumbu, bersifat urai dan ukuran yang relatif lebih kecil dibandingkan dengan sedimen pasiy lainnya. Persentase kandungan masing-masing fraksi pada sedimen pasir lanauan adalah: Kerikil 0-2,7\%, pasir 32,5-99,8\%, lanau $0,2-45,7 \%$, dan tanpa lempung.
Penyebaran pasir lanauan mulai kedalaman 5 meter hingga kedalaman 100 meter. Di daerah lepas pantai, endapan pasir lanauan mengandung pecahan cangkang foram dalam jumlah yang tidak terlalu besar, sekitar 5\%.

Lanau Pasiran

Lanau pasiran memiliki sifat fisik yang sama dengan sedimen pasir lanauan. Namun perbedaan terletak pada komposisi antara pasir dan lanau. Persentase kandungan masing-masing fraksi pada sedimen lanau pasiran adalah: pasir 11,1-48,9\%, lanau $51,1-94,9 \%$ dan tanpa kerikil lempung.

Geo-Resources

- Gambar 2. Peta batimetri perairan bagian selatan Banyuwangi.

Gambar 3. Peta sebaran tekstur sedimen dasar laut yang mengandung mineral berat.

Tabel 1. Hasil analisis besar butir berdasarkan klasifikasi Folk (1980) menggunakan program Sel, Kum dan Kummod

Na.	Lokasi	\mathbf{X} (phi)	Sort.	Skew.	Kurt.	Kerikil	Pasir	Lanau	Lemp.	Klasifikasi Felk (1980)
1.	BL-02	0.8	1,0	1.0	6,2	2.2	95,3	2.5	0,0	Pasir (S)
2.	BL-03	4,4	0,4	4.2	26,6	0.0	11,1	88.9	0,0	Lanau pasiran (sZ)
3.	BL-04	3.9	1,2	-1,7	4,3	00	26,2	73.8	0,0	Lanau pasiran (K)
4.	BL-05	3,7	0.9	-1,3	4,8	00	54,3	45,7	0.0	Pasir lanauan (25)
5.	BL-06	4,2	0,5	$-2,1$	9,0	0.0	23,0	77,0	0,0	Lanau pasiran (XZ)
6.	BL-08	3,7	0,9	-1,2	4,0	0.0	48,9	51,1	0,0	Lanau pesiran (sZ)
7.	BL-09	2.3	0,7	0,5	3,5	0.0	97,6	2,4	0,0	Pasir (\$)
8.	BL-10	3,1	0,9	0,1	2,4	00	80,9	19,1	0,0	Pasir lanauan ($\mathbf{z} \mathbf{S}$)
9.	BL-11	3,4	0,8	-0,3	2,9	00	77,1	22,9	0,0	Pasir lanauan ($\mathbf{z S}$)
10.	BL-12	3,2	1,1	-0.5	2,4	00	70,6	29.4	0,0	Pasir lanauan ($\mathbf{z S}$)
11.	BL-13	2.2	1,1	0,7	2,7	00	90,2	9.8	0,0	Passir (S)
12.	BL-14	4,0	0,9	-1,9	5,9	00	29,0	71,0	0,0	Lanam pasiran (SZ)
13.	BL-15	4,0	0.8	-1,6	5,4	00	37,2	62.8	000	Lanmu pasiran (K2)
14.	BL-16	3,6	0,8	-0,6	2,9	00	65,3	34,7	0,0	Pasir lanauan (zS)
15.	BL-17	3,5	1,0	-0.8	2,9	00	59,0	41,0	0,0	Pasir lanauan ($\mathbf{z S}$)
16.	BL-18	3.9	0,9	-1,8	5,8	00	34,7	65.3	0,0	Lanau pasiran (\%2)
17.	BL-19	2.2	0,9	0.5	3,3	0.0	96,0	4,0	0.0	Pasir (\$)
18.	BL-21	3.9	0,7	-1,2	5,0	0,0	51.9	48,1	0,0	Pasir lanuuan (zS)
19.	BL-22	4,1	0,7	$-2,1$	8,7	0,0	32,5	67,5	00	Pasir lanauan (zS)
20.	BL-23	1.3	0,8	1.2	5,1	0.0	98,7	1.3	0.0	Pasir (\$)
21.	BL-24	33	0.9	-1,0	4,5	0,0	80,4	19.6	0.0	Pasir lanauan (zS)
22.	BL-28	1.2	0,6	0,7	4,2	0,0	99,8	0,2	0.0	Pasir lamuan (z_{5})
23.	BL-29	0.4	0.9	0.9	5,2	2.7	96,4	0.9	0.0	Pasir lanuman (zS)
24.	BL-30	3.5	1,0	-0,8	3,0	0,0	59.3	40,7	0.0	Pasir lanauan (zS)
25.	BL-31	1.4	0,8	90	3,5	0,0	99.4	0,6	0.0	Pasir (\$)
26.	BL-32	4.3	0,4	-3,3	18,6	0,0	13,6	86,4	0,0	Lanum pasiran ($\mathrm{S}_{\text {L }}$)
27.	BL-33	4.3	0,5	-3,6	15,	0,0	17,9	82,1	0,0	Lanam pasiran (S2)
28.	BL-34	1,8	1,1	8.9	3.3	0,0	93,7	6,3	00	Pasir (\$)
29.	BL-35	3,7	0,9	-1,2	4,1	00	58,3	41,7	0,0	Pasir lanauan ($\mathbf{z S}$)
30.	BL-36	3,5	1,0	at	1.0	0.0	53,7	46,3	0.0	Pasir lanauan (zS)
31.	BL-37	0.7	0,9	0.9	6,5	2.5	95,8	1,7	0,0	Pasir (\$)
32.	BL-38	4.0	1,2	-2,5	8,2	0.5	20,5	79,1	0.0	Lanau pasiran (SK)
33.	BL-39	4.3	0,6	-3,6	17,3	0.0	14,7	85,3	0,0	Lamum pasiran (SZ)
34.	BL-40	4.2	0,6	-2,4	10,8	0.0	25,0	75,0	0.0	Lanas pasiran (SZ)
35.	BL-41	4.2	0,7	-2,5	10,3	0.0	22.2	77,8	0.0	Lamau pasiran (KZ)
36.	BL-42	1,0	1,1	1,0	5,0	00	96.0	4,0	0.0	Pasir (\$)
37.	BL-43	0.7	1,1	0.5	4,5	6.5	91,2	2,3	0,0	Pasir kerkilan (gS)
38.	BL-47	2.5	1,0	0.4	3,0	0.0	89,3	10,7	0.0	Pasir lanauan (zS)
39.	BL-48	-1,3	0,9	2,4	15,9	70.9	28,3	0,8	0.0	Pasir kenkilan (gS)
40.	BL-49	08	0,9	0.5	4,8	08	98,5	0,7	0.0	Pasir kerikilan (gS)
41.	BL-50	4,4	0,4	-6,0	48,6	0,0	6,4	93,6	0.0	Lanau pasiran (SZ)
42.	BL-52	4.3	0.5	-4,0	20,4	0,0	9.9	90, 1	0.0	Lansu pasiran (SZ)
43.	BL.53	4,4	0,3	-6,0	44,8	0,0	5,1	9.9	00	Lanau pasiran (SZ)
44.	BL-56	2,1	0,8	0.4	3,5	0,0	97.9	2.1	0.0	Pasir lanauan ($\mathbf{z 5}$)
45.	BL-57	1.8	0,7	0.5	3,6	0,0	99.6	0.4	00	Pasir lanmaan (z 5)
46.	BP-01	2.5	0,6	0.5	5,0	0,0	98,5	1,5	0.0	Pasir (\$)
47.	BP-02	2.6	0,6	0.6	4.5	0,0	97.4	2.6	0,0	Pasir (\$)
48.	BP-03	1,4	0,6	0.4	3,8	0,0	99,9	0,1	0,0	Pasir (\$)
49.	BP-04	0.3	1,3	1,3	6,0	9,5	86,6	3,8	0,0	Pasir kerikilan (gS)
so.	BP-05	0.6	1,7	0,0	2,0	18,5	81,1	0,4	0,0	Pasir kerikilan (gS)
51.	BP-06	3.2	0,6	$-0,8$	4.5	0,0	95,3	4,7	0,0	Pasir (\$)
52	BP-07	2.9	0,7	0,1	3,8	0,0	94,2	5,8	0,0	Pasir (\$)
53.	BP-08	2,7	0,6	-0,1	4,1	0,0	98,4	1,6	0,0	Pasir (\$)
54.	BP-69	2,0	0,8	0,5	3,3	0,0	99,1	0,9	0,0	Pasir (\$)
55.	BP-10	2,4	0,7	0,3	2,8	0,0	99,0	1,0	0,0	Pasir (\$)
56.	BP-11	2,2	0,7	0,0	3,3	0,0	99.5	0,5	0,0	Pasir (\$)
57.	BP-12	1,6	0,8	0,7	3,6	0,0	99,0	1,0	0,0	Pasir (\$)
58.	BP-13	$-0,4$	1,8	0,2	2,2	41,5	57,4	1,1	0,0	Kerikil pasiran (sG)
59.	BP-15	0,4	1,1	0,7	4,1	4,5	94.9	0,6	0,0	Pasir kerikilan (gS)
60.	BP-16	1.6	0,8	0,9	4,6	0,0	97.7	2,3	0,0	Pasir (\$)
61.	BP-17	1,9	1,1	0,1	1.9	0,0	99.2	0,8	0,0	Pasir (\$)
62.	BP-18	3.0	0.8	-1,1	4.5	0,0	95,7	4,3	0,0	Pasir (\$)
63.	BP-19	0,6	1,3	1,1	5,2	6,3	88,7	5,1	0,0	Pasir kerikilan (gS)
64.	BP-20	2,3	0,6	-0,1	4.2	0,0	99,0	1,0	0,0	Pasir(\$)
65.	BP-21	1,6	0,6	0,3	4,0	0,0	99,8	0,2	0,0	Pasir (S)
66.	BP-22	1,6	0,9	0,6	3,1	0,0	98.9	1,1	0,0	Pasir(S)
67.	BP-23	2,0	0,7	0,4	3,6	0,0	99.4	0,6	0,0	Pasir (\$)
68.	BP-24	3,8	1,3	-1,5	3,7	0,0	27,8	72,2	0,0	Lanau pasiran (sZ)

Keterangan: Sort. = pemilahan; Skew. $=$ Stewness; Kurt $=$ Kurtosis; Lemp. $=$ Lempung

Lanau pasiran memiliki sifat fisik umum berwarna hitam yang didominasi pasir besi, dan warna abuabu hingga keputihan bersusunan pasir terumbu, sedikit kuarsa, mengandung pecahan cangkang, dan koral, bersifat urai dan ukuran butiran yang relatif lebih kecil dibandingkan dengan sedimen pasir. Penyebaran lanau pasiran mulai kedalaman 80 meter hingga kedalaman 200 meter seluas 27,590 ha. Penyebaran lanau pasiran dapat lebih besar bila pengambilan percontoh dapat dilakukan pada kedalaman yang lebih besar. Pada penelitian ini percontoh sedimen yang diperoleh hanya mampu sampai kedalaman 100 meter, sedangkan dari data kedalaman yang ada di daerah penelitian terutama di atas 3 mil laut dapat mencapai lebih dalam.

Pasir Kerikilan

Sama seperti- sedimen lainnya, pasir kerikilan memiliki sifat fisik umumnya berwarna hitam dan abu-abu hingga keputihan, tersusun oleh mineral hitam dan pecahan terumbu, juga bersifat urai. Persentase kandungan masing-masing fraksi pada sedimen pasir kerikilan adalah: kerikil $0,8-70,9 \%$, pasir 28,3-91,2\%, lanau $0,4-5,1 \%$, dan tanpa lempung.

Kerikil Pasiran

Kerikil pasiran hanya terdapat pada lokasi pantai, yaitu BP-13 yang terletak di daerah Teluk Grajagan. Sama seperti sedimen lainnya, kerikil pasiran memiliki sifat fisik umum berwarna hitam dan abuabu hingga keputihan, membulat tanggung, tersusun oleh mineral hitam dan pecahan batuan beku (lithic). Persentase kandungan masing-masing fraksi pada sedimen kerikil pasiran adalah: kerikil 41,5\%, pasir $57,4 \%$, lanau $1,1 \%$, dan tanpa lempung.
Sebaran sedimen tersebut umumnya berukuran pasir sampai kerikil, berwarna hitam (kecuali pecahan terumbu dan cangkang berwarna putih) dan tidak terdapat tekstur lempung. Ukuran pasir tersebut sama dengan ukuran rata-rata mineral berat, sehingga peluang untuk mendapatkan mineral berat dalam sedimen di pantai dan dasar laut cukup prospektif.

Ketebalan Sedimen Mengandung Mineral Berat

Hasil interpretasi rekaman seismik berdasarkan pengenalan konfigurasi reflektor seismik di perairan bagian selatan Banyuwangi menunjukkan dua sekuen sedimen mengandung mineral berat, yaitu

Sekuen A di bagian bawah dan Sekuen B di bagian atas (Gambar 4). Kedua sekuen tersebut merupakan sedimen berbutir halus hingga kasar yang diperkirakan mengandung mineral berat hasil rombakan batuan induknya. Potensi mineral berat dalam sedimen yang masih bersifat lepas (unconsolidated sediment) terdapat dalam Sekuen B yang terletak di bagian permukaan penampang seismik.

Sekuen B dicirikan oleh konfigurasi reflektor selaras (concordance),laminasi sejajar (parallel), perlapisan terpotong-potong (hummocky), dan longsoran (s/ump). Sementara itu, Sekuen A dicirikan oleh bentuk konfigurasi reflektor seismik bergelombang terputus-putus (wavy), selaras (concordance); pengisian (channel fill), dan bidang pepat erosi (erosional truncation) sebagai pembatas antara Sekuen A dan Sekuen B.

Ciri-ciri tersebut menunjukkan bahwa sedimen pada Sekuen \mathbf{B} belum terganggu dan besifat lepas dengan komposisi pasir halus hingga sedang (Ringis, 1993) dan diperkirakan sebagai sedimen mengandung mineral berat. Ketebalan Sekuen B mencapai 20 meter, makin menipis ke arah lepas pantai. Di sekitar perairan pantai (nearshore), ketebalan sedimen lebih besar di bandingkan di daerah pantai dan lepas pantai (offshore). Penipisan ke arah lepas pantai terjadi karena kelerengan dasar laut ke arah lepas pantai makin curam dan sedimen lebih mudah mengalami longsoran ke arah yang lebih dalam.
Sekuen A mempunyai ciri-ciri utama bergelombang, berbukit-bukit, adanya erosi pada bagian permukaan sekuen yang ditandai oleh bidang pepat erosi (erosional truncation) dan kemudian terjadi pengisian (channel fill) pada bagian yang cekung. Ciri-ciri lainnya adalah bagian atas Sekuen A sudah mengalami erosi dan terpotong-potong, dan pada bagian lembah terisi kembali oleh sedimen yang berasal dari Sekuen A itu sendiri dan dari darat.
Makin ke arah bawah pada Sekuen A, konfigurasi reflektor seismik makin hilang, namun ciri berbentuk bintik-bintik tidak beraturan menunjukkan sedimen makin keras (Ringis, 1993). Berdasarkan hal tersebut, dapat ditafsirkan bahwa Sekuen A adalah batuan dasar yang terdapat di perairan bagian selatan Banyuwangi. Bila dikorelasikan dengan batuan di darat, maka Sekuen A sebanding dengan batuan Formasi Merubetiri yang terdiri atas perselingan breksi gunung api, lava dan tuf.

Kandungan Mineral Berat Dalam Sedimen

Hasil pemetaan di sepanjang pantai dan perairan bagian selatan Banyuwangi memperlihatkan adanya kandungan magnetit ($\mathrm{Fe}_{3} \mathrm{O}_{4}$) atau pasir besi daerah bagian barat Teluk Grajagan. Di bagian barat Teluk Grajagan tersebut, potensi pasir besi yang cukup besar terdapat di sepanjang pantai, hampir 3 km dengan ketebalan 3-4 meter dan lebar 20 meter yang merupakan potensi pasir besi yang cukup prospektifdi Banyuwangi.

Dari analisis terhadap empat belas percontoh sedimen dasar laut dan enam percontoh pantai terpilih diperoleh persentase kandungan mineral berat. Analisis mineral berat tersebut dilakukan dengan dua cara, yaitu: langsung menghitung persentase mineral berat secara manual dengan magnet dan analisis di dalam larutan bromoform (Tabel 2).
Analisis pada larutan bromoform dilakukan hanya untuk 3 phi, sedangkan sisanya (non-3 phi) dilakukan dengan perhitungan perbandingan terhadap seluruh percontoh 3 phi yang dianalisis dan seluruh percontoh asal. Kandungan mineral berat terbesar di laut terdapat pada percontoh BL-32 dalam sedimen lanau pasiran (sZ) sebesar 69,79\% berat, BL-33 dalam sedimen lanau pasiran (sZ) sebesar $61,96 \%$, berat dan BL-30 dalam sedimen pasir lanauan (zS) sebesar $54,22 \%$ berat. Di pantai, kandungan mineral berat terbesar terdapat pada lokasi percontoh BP-11 dalam sedimen pasir (S) sebesar $82,24 \%$, berat dan BP-9 dalam sedimen pasir (S) sebesar $97,47 \%$ berat. Hasil analisis foto mikrograf di lokasi percontoh BP-9 dalam sedimen pasir (S) menunjukkan seluruh butiran adalah magnetit dengan ciri-ciri butiran warna hitam mengkilap, membulat tanggung, dan berukuran pasir halus hingga pasir sedang ($0,0625-0,5 \mathrm{~mm}$). Penampakan butiran yang lain dalam jumlah terbatas adalah mineral pirit, zirkon, kalsit, dan kuarsa dengan ciri-ciri warna bening putih hingga kuning dan berukuran sama dengan magnetit (Gambar 5).

Dari komposisi mineral berat tersebut, persentase kandungan magnetit di atas 80% berat, sisanya adalah mineral berat lainnya, seperti ilmenit, hematit, dan limonit. Kadar Fe pada magnetit di sepanjang pantai selatan Banyuwangi adalah antara 6,8\% - 30,6\% dan di laut adalah antara 3,3\% 27,4\% (Novico dkk., 2004). Kadar tersebut berpotensi untuk bahan baku pembuatan semen dan besi beton (Sutisna, 2006).

Gambar 4. Hasil interpretasi rekaman seismik Lintasan-10 berarah utara selatan di perairan selatan Banyuwangi.

Gambar 5. Mikrograf mineral berat di lokasi percontoh BR-9, sebagian besar adalah magnetit (pasir besi) dan lainnya adalah pirit. zirkon, kalsit, dan kuarsa.

Dari persentase mineral berat tersebut, kandungan magnetit dalam mineral berat cukup besar, pada umumnya di atas 80% berat, kecuali pada dua lokasi, yaitu BL-30 sebesar $72,93 \%$ berat.

Kandungan yang sangat besar lainnya adalah pada lokasi BP-11 dalam sedimen pasir (S), BP-16 dalam sedimen pasir (S), BL-6 dalam sedimen lanau pasiran (sZ) dan BL-32 dalam sedimen lanau pasiran (sZ) berkisar antara 80 - 89\% berat. Pada lokasi percontoh lainnya kandungan di bawah 80% berat

Tabel 2. Hasil Analisis Mineral Berat Dalam 100 gram Total Percontoh Sedimen dan Persentase Berat Magnetit Dalam Total Mineral Berat

No.	Lokasi	Percontoh $(\mathbf{G r})$	Total MB $(\mathbf{G r})$	MB (\%)	Magnetit $(\mathbf{G r})$	MB Lainnya $(\mathbf{G r})$	Magnetit $(\%)$
1	BP-01	100	44,93	44,93	40,1310	4,7980	89,32
2	BP-06	100	8,26	8,26	8,1902	0,0732	99,11
3	BP-08	100	15,50	15,50	7,4749	8,0281	48,22
4	BP-09	100	97,47	97,47	5,9649	1,5073	98,45
5	BP-11	100	82,24	82,24	74,2376	7,9974	90,28
6	BP-16	100	39,35	39,35	9,1696	0,1825	99,54
7	BL-04	100	38,61	38,61	7,0773	1,5275	96,04
8	BL-06	100	47,61	47,61	45,2150	2,3960	94,97
9	BL-08	67	29,10	43,47	27,1907	1,9318	93,37
10	BL-09	100	32,74	32,74	0,1379	2,6001	92,06
11	BL-11	100	24,83	24,83	21,5465	3,2821	86,78
12	BL-12	100	17,04	17,04	16,6748	0,3615	97,89
13	BL-21	100	15,21	15,21	4,7471	0,4587	96,98
14	BL-22	40	6,40	16,05	6,2986	0,1195	98,14
15	BL-24	100	10,66	10,66	0,1317	0,5326	95,01
16	BL-28	100	20,92	20,92	19,7907	1,1280	94,61
17	BL-30	100	54,22	54,22	39,5436	14,6786	72,93
18	BL-32	79	55,10	69,78	50,5662	4,5601	91,73
19	BL-33	100	61,96	61,96	1,7640	0,1970	99,68
20	BL-43	100	25,60	25,60	4,6108	0,9884	96,14

disebabkan adanya pecahan karang dan butiran pecahan batuan beku. Kandungan mineral berat di sekitar pantai lebih besar dibandingkan dengan di laut. Di laut, percontoh sedimen yang dianalisis pada beberapa lokasi mengandung cangkang dan material alam lainnya, seperti pecahan terumbu, cangkang, dan batuan beku, sehingga untuk mendapatkan persentase mineral berat harus terlebih dahulu dilakuan pencucian.

DISKUSI

Hasil analisis sedimen pantai, permukaan dasar laut dan interpretasi seismik pantul telah dapat membantu menjelaskan penyebaran horizontal dan vertikal sedimen yang mengandung mineral berat. Hasil analisis pada sedimen tersebut menunjukkan kandungan yang bervariasi, dan beberapa percontoh menunjukkan kandungan antara 80-100\% berat. Kandungan yang besar tersebut pada umumnya didapatkan pada percontoh di pantai dan perairan sekitar pantai.

Secara umum penyebaran sedimen dasar laut menunjukkan pola arah berdasarkan besar butir. Di sekitar pantai umumnya terdapat sedimen pasir, pasir kerikilan dan pasir lanauan. Ke arah lepas pantai makin ménghalus dan hampir seluruhnya adalah lanau pasiran. Makin jauh ke arah lepas pantai, lanau pasiran diperkirakan makin luas.

Tingginya kandungan mineral berat tersebut disebabkan oleh beberapa faktor, antara lain lokasi percontoh yang dekat dengan batuan sumbernya di darat, yaitu batuan terobosan (granit dan granodiorit) dan Formasi Merubetiri yang terdiri atas perselingan breksi gunung api, lava, dan tuf yang kaya akan mineral berat. Batuan terobosan di daerah penelitian tersebut merupakan batuan yang menyusun lajur Pegunungan Selatan Jawa yang kaya mineral berat, terutama pasir besi.

Mineral berat di selatan Banyuwangi hadir pada semua jenis tekstur sedimen pantai dan dasar laut, walaupun kandungannya bervariasi. Besar kecilnya kandungan mineral berat lebih ditentukan oleh
letaknya terhadap batuan sumber di darat. Berdasarkan hasil analisis dan penampakan di lapangan, mineral berat umumnya terdapat di daerah teluk yang diapit oleh dua tanjung. Hasil interpretasi rekaman seismik memperlihatkan penyebaran sedimen mengandung mineral berat ke arah lepas pantai makin menebal, kemudian menipis di sekitar lereng hingga mencapai lembah.

Kondisi seperti yang terdapat di selatan Banyuwangi merupakan ciri-ciri seluruh pantai selatan Jawa yang merupakan rangkaian Pegunungan Selatan Jawa dengan batuan vulkanik, batuan terobosan dan sedimen perselingan breksi, lava dan tuf sebagai batuan sumber mineral berat terutama magnetit (pasir besi). Di beberapa tempat, seperti di daerah Sukabumi, Tasikmalaya, dan Cilacap, pasir besi tersebut telah ditambang untuk industri semen dan besi beton.

Dari potensi yang ada, maka terbuka peluang pengembangan usaha pertambangan pasir besi di selatan Banyuwangi.

KESIMPULAN

Hasil pemetaan menunjukkan adanya potensi mineral berat, terutama pasir besi, yang terdapat di pantai dan perairan sekitarnya (dasar laut). Potensi mineral berat tersebut terdapat di pantai dan dalam sedimen dasar laut dengan luas mencapai lebih dari 51,138 ha ($511,38 \mathrm{~km}^{2}$) dan ketebalan mencapai 20 meter. Dari penampang seismik, diketahui bahwa ketebalan sedimen di sekitar pantai lebih besar, menipis ke arah lepas pantai (offshore).

Kandungan mineral berat terbesar di lepas pantai terdapat pada percontoh BL-32 dalam sedimen lanau pasiran (sZ) sebesar 69,78\% berat, BL-33
dalam sedimen lanau pasiran (sZ) sebesar 61,96\% berat dan BL-30 dalam sedimen pasir lanauan (zS) sebesar $54,22 \%$ berat. Di pantai, kandungan mineral berat terbesar terdapat pada lokasi percontoh BP-11 dalam sedimen pasir (S) sebesar $82,24 \%$ berat, $\mathrm{BP}-9$ juga dalam sedimen pasir (S) sebesar 97,47\% berat.
Dari komposisi mineral berat, hampir seluruhnya adalah magnetit dengan persentase kandungan di atas 80% berat, sisanya adalah mineral berat lainnya, seperti ilmenit, hematit, limonit, rutil, dan zirkon. Kadar Fe pada pasir besi di sepanjang pantai adalah antara $6,8 \%-30,6 \%$, dan di laut adalah antara 3,3\% - 27,4\%. Kadar tersebut memenuhi standar sebagai bahan baku untuk semen dan besi beton.

Pada lokasi percontoh lainnya kandungan di bawah 80\% berat karena adanya pecahan karang dan butiran pecahan batuan beku. Berdasarkan potensi tersebut, maka daerah penelitian cukup prospektif untuk pengembangan usaha pertambangan mineral berat, terutama pasir besi.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada Ir. Subaktian Lubis, M.Sc., Kepala Pusat Penelitian dan Pengembangan Geologi Kelautan yang telah mengizinkannya melaksanakan penelitian di Banyuwangi. Terima kasih juga disampaikan kepada Bupati Banyuwangi Ir. H. Sámsul Hadi dan Ketua Bappeda Banyuwangi Bapak Ir. R. Soekarwodinoto, DEA. atas diskusi dan masukannya. Penulis juga berterima kasih kepada Prof (Ris). Mimin Karmini, APU. atas berbagai diskusi dan masukannya. Ucapan terima kasih disampaikan pula kepada G. Latuputty, N.Y. Geurhaneu dan F.X. Harkinz atas masukan dan kerja samanya.

ACUAN

Badan Perencanaan Pembangunan Daerah Banyuwangi, 2004. Inventarisasi dan Pemetaan Sumber Daya Kelautan Kabupaten Banyuwangi. Badan Perencanaan Pembangunan Daerah Banyuwangi, Laporan Intern, 190 (tidak diterbitkan).
Folk, R.L., 1980. Petrology of Sedimentary Rocks. Hamphill Publishing Company Austin, Texas. 170 p.

Geo-Resources

Novico, F., Usman, E., Hartono, Sahudin, Latuputty, G., Geurhaneu, N.Y. dan Harkinz, F.X., 2004. Penyelidikan Aspek Geologi dan Geofisika Perairan Banyuwangi, Pusat Penelitian dan Pengembangan Geologi Kelautan, Bandung, Laporan Intern, 80 hal. (tidak diterbitkan).
Ringis, J., 1993. Deposit Models for Detrital Heavy Minerals on East Asian Shelf Areas and the Use of High Resolution Seismic Profiling Techniques in their Exploration. CCOP Publication: 31 pp .
Priyono, A., 2000. Interpretasi Geologi Seismik, Diktat Kuliah Pascasarjana, Institut Teknologi Bandung, 50 hal. (tidak diterbitkan).
Pusat Sumber Daya Geologi, 2006. Pedoman Teknis Eksplorasi Pasir Besi. Bulletin Sumber Daya Geoogi 1 (2): 79-86.

Sangree, J.B. and Wiedmier, J.M., 1979. Facies Interpretation from Seismic Data. Geophysics 44(2):131.
Sapei, T., Suganda, A.H., Astadiredja, K.A.S. dan Suharsono, 1992. Peta Geologi Lembar Jember, Jawa, skala 1:100.000. Pusat Penelitian dan Pengembangan Geologi, Bandung.

Sherif, R.E., 1980. Seismic Stratigraphy. International Human Resources Development Corporation, Boston: 222 pp.

Sidarto, Suryono, N. dan Sanyoto, P, 1999. Sistem sesar Pengontrol Pemúnculan Kelompok Gunung Api Muria Hasil Penafsiran Citra Landsat. Jurnal Geologi dan Sumberdaya Mineral XI (99): 9-14
Sutisna, D.T., 2006. Tinjauan Umum Potensi dan Pemanfaatan Cebakan Bijih Besi di Indonesia. Bulletin Sumber Daya Geologi 1(2): 10-15.

