KETERDAPATAN INTAN SEKUNDER DI SEPANJANG SUNGAI LANDAK, KALIMANTAN BARAT

Said Aziz
Pusat Survei Geologi
JI. Diponegoro No. 57 Bandung - 40122

SARI

Batuan asal intan sekunder yang terdapat di beberapa tempat di Kalimantan sampai sekarang belum diketahui. Sejak abad XIX M beberapa perusahaan telah melakukan eksplorasi intan di daerah ini, tetapi belum satupun dari perusahaan tersebut berhasil menemukan batuan sumber (source rock) intan sekunder tersebut.
Penelitian sebaran intan sekunder di Kalimantan Barat, khususnya di sepanjang Sungai Landak, mengindikasikan bahwa intan sekunder di daerah ini terbatas pada aliran "Proto Landak" yang meliputi aliran Sungai Landak dan aliran Sungai Sekayam.

Hasil analisis mineral berat dari penelitian ini diharapkan dapat digunakan untuk memperkirakan sejauh mana sebaran intan dan asosiasi mineral beratnya yang terdapat di daerah ini. Selanjutnya data tersebut dapat juga digunakan untuk mencari batuan sumbernya.

Kata kunci: intan sekunder, mineral berat, Kalimantan Barat

Abstract

Alluvial diamonds are found in several places in Kalimantan, but up to now the source (rock) of alluvial diamond in Kalimantan is not known yet. Since $19^{\text {¹ }}$ centuries, some companies had explored alluvial diamond in these areas but none of them have succeded to find the source rock of alluvial diamond.

The study of alluvial diamond distribution in West Kalimantan, especially along Landak River, indicates that the alluvial diamond in this area is limited only in Protolandak drainages, including Landak and Sekayam River regions. The result of heavy mineral analysis from this study could be used to estimate the distribution of alluvial diamond and heavy minerals content in this area. Besides this, it is also used to trace where the source rock of alluvial diamond comes from.

Keywords: alluvial diamond, heavy mineral, West Kalimantan

PENDAHULUAN

Intan di Sungai Landak, Kalimantan Barat sudah mulai didulang sejak abad ke-4 Masehi, (Kanwil Pertambangan Kalsel., 1982), namun sampai sekarang belum ada yang mempelajari secara ilmiah sejauh mana sebaran intan aluvium yang terdapat di wilayah ini, serta dari mana sumber intan tersebut. Oleh karena itu penelitian yang dilakukan sekarang ini diharapkan dapat membantu melokalisasi wilayah penyebaran intan di Kalimantan Barat dan sekaligus untuk mencari sumbernya.
Penelitian dilakukan dalam rangka penelitian intan sekunder di Kalimantan dengan biaya APBN 2006, dan difokuskan di sepanjang sungai Landak mulai dari desa Sebirang sampai ke Perbuak, Kabupaten

Landak, sedangkan di sungai Sekayam mulai dari Sanggau sampai ke Entikong, Kabupaten Sanggau (Gambar 1), meliputi sebaran endapan aluvium sekarang, endapan teras, dan sebaran pertambangan rakyat aktif saat ini.

METODE

Penelitian diawali dengan menginterpretasi citra landsat, pemetaan sedimen Kuarter, yang didalamnya termasuk endapan teras dan pemetaan tambang intan rakyat. Kemudian dilanjutkan dengan pengukuran geofisika, pemboran Bangka dan sumur uji untuk mengetahui lebih terperinci kedalaman dan sebaran aluvium yang mengandung intan di-daerah ini. Peta dasar yang digunakan adalah peta topografi

Bakosurtanal 1:50 000.

Pemercontohan sedimen dilakukan di beberapa lokasi tambang rakyat dan singkapan endapan teras pada lapisan pasir maupun pada lapisan kerikil. Di lapangan percontoh-percontoh tersebut diayak untuk memisahkan fraksi kerikil, pasir, dan lumpur. Ketiga fraksi ini diukur volumenya, kemudian ditentukan persentasenya. Selanjutnya, fraksi pasir didulang untuk diambil konsentratnya, sedangkan sisanya fraksi lumpur diukur dan dibuang. Fragmen batuan yang terdapat dalam kerikil yang sulit diidentifikasi secara kasat mata dipilih untuk analisis butir dan petrografi.
Tujuan penelitian ini untuk melokalisasi batas sebaran intan sekunder di Kalimantan Barat, sehingga dapat digunakan sebagai bahan pertimbangan dalam melakukan eksplorasi lanjut, serta dapat dijadikan acuan untuk menelusuri keberadaan intan primer.

TATAAN GEOLOGI

Morfologi

Morfologi daerah penelitian hampir seluruhnya ditempati oleh perbukitan bergelombang dan sebagian kecil berupa pedataran. ${ }^{\text { }}$ Perbukitan bergelombang mempunyai arah tak beraturan, baik berarah barat laut - tenggara, maupun berarah timur laut - barat daya. Selain itu, ada pula yang berupa tonjolan-tonjolan bukit tersendiri "inse/berg". Perbukitan bergelombang sedang yang berarah barat laut - tenggara membentang mulai dari Gunung Semarong melewati Bukit Belimbing sampai ke Gunung Batur dan Ampasa. Bukit ini dipotong oleh aliran Sungai, Landak di bagian tengahnya, sedangkan di bagian kaki bukit sebelah barat daya dialiri oleh Sungai Behe. Ketinggian puncak-puncak bukit di perbukitan ini berkisar antara 100 m sampai 440 m di atas permukaan laut.

Perbukitan yang berarah timur laut - barat daya

Gambar 1. Peta lokasi daerah penelitian.
dimulai dari Bukit Ambarong sampai ke Gunung Sebawang melewati Gunung Benauh. Ketinggian puncak-puncak bukitnya berkisar antara 100 m sampai 560 m . Tonjolan-tonjolan bukit tersendiri tersebar tidak teratur, seperti Bukit Pongsi, Gunung Kelayu, Gunung Sebadokmalang dan Gunung Empoho dengan ketinggian berkisar dari 200 sampai 550 m di atas permukaan laut. Perbukitan tersebut merefleksikan keberadaan granit, granodiorit, andesit, dan batuan sedimen.

Morfologi pedataran umumnya terdapat di daerah sekitar aliran sungai, seperti di bagian tengah aliran Sungai Pade dan Sungai Behe (gambar 2), sebelah barat laut Serimbu, di bagian tengah jalan Ngabang Mencal (gambar 2) dan di sekitar muara Sungai Belancian, anak Sungai Landak (gambar 3).

Pola aliran sungai yang berkembang di daerah penelitian adalah mendaun, hampir sejajar, tegak lurus, dan sungai berkelok. Pola aliran ini cukup kompleks sebagai cerminan berbagai Jenis litologi dan pola struktur. Sungai Landak merupakan sungai utama dan paling besar yang mengalir di daerah penelitian berpola aliran berkelok di bagian tengah dan hilir, serta berpola aliran mendaun di bagian hulu. Sungai Menyuke, Sungai Behe, dan Sungai Pade sebagai anak-anak Sungai Landak memperlihatkan pola aliran hampir sejajar, mengalir ke arah tenggara dan bermuara ke Sungai Landak. Sungai Belancian sebagai anak Sungai Landak yang mengalir ke arah barat daya berpola aliran mendaun. Secara keseluruhan pola aliran sungai di daerah penelitian tampak tegaklurus. Boleh jadi tampilan pola aliran ini sangat dipengaruhi oleh pola struktur.

Geologi Daerah Penelitian

Daerah penelitian di sekitar aliran Sungai Landak terdiri atas beberapa formasi; Formasi Pedawan, Batuan Gunung Api Raya, Granadiorit Mensibau, Formasi Pedawan, Batupasir Landak, Batuan Terobosan Sintang, dan Aluvium (Supriatna dkk., 1993, Gambar 2).

Formasi Brandung merupakan batuan tertua yang terdapat di daerah penelitian, tersingkap sedikit di sebelah tenggara, berumur Jura Tengah. Tebal formasi lebih dari 100 m , terdiri atas serpih berwarna coklat, kelabu, dan hitam berselingan dengan batupasir halus. Formasi ini kemudian ditutupi secara tidak selaras oleh Formasi Pedawan berumur

Kapur, dan tersebar cukup luas menempati hampir 45% daerah penelitian. Susunan litologinya terdiri atas batupasir, batulanau, batulumpur, dan serpih yang biasanya gampingan dan setempat karbonan atau tufan. Batupasir berkomposisi kuarsa-felspar berbutir halus sampai sedang, setempat berbutir kasar sampai konglomeratan dengan ketebalan kurang dari 30 cm . Batupasir ini umumnya berselingan dengan batulanau dan batulumpur. Formasi ini terbentuk di lingkungan laut dangkal sampai dalam. Formasi ini ditutupi secara tidak selaras oleh Batupasir Landak.

Satuan batupasir Landak berumur Oligosen Akhir tersebar di bagian tengah daerah penelitian yang di dalamnya mengalir Sungai Landak dan anak-anak sungainya. Batuannya terdiri atas batupasir kuarsa dan litik, berbutir menengah sampai kasar, umumnya terpilah buruk dan kerakalan. Di beberapa tempat konglomerat dan batulumpur berwarna merah kecoklatan, setempat karbonan dengan struktur lapisan bersusun. Litologinya serupa dengan Batupasir Landak dan terletak tidak selaras di atas Formasi Pedawan. Lingkungan pengendapan adalah fluviatil proximal.

Dí samping batuan sedimen terdapat pula batuan vulkanik, batuan gunung api Raya berumur Kapur Awal yang tersingkap di bagian barat daya daerah penelitian dengan ketebalan lebih dari 500 m . Batuan gunung api Raya terdiri atas andesit, dasit, basal, dan piroklastika. Selain itu termasuk pula konglomerat aneka bahan, batupasir, dan batulumpur.
Pada umumnya batuan ini telah termalihkan oleh terobosan-terobosan berumur Kapur dan Tersier, sehingga di beberapa tempat terjadi mineralisasi (pirit, kalkopirit, molibdenit, arsenopirit, dan sfalerit). Satuan batuan ini secara tidak selaras ditutupi oleh Satuan Batupasir Landak.

Bagian tenggara, barat daya dan timur laut tersingkap granodiorit Mensibau berumur Kapur Awal. Batuannya terdiri atas granodiorit horenblenda berwarna terang, diorit kuarsa, granit monzonit, kemagnetan sedang sampai kuat, dan umumnya terubah dan terdeformasi. Satuan Granit ini ditutupi secara tidak selaras oleh Batupasir Landak dan menerobos Satuan Batuan Gunung Api Raya. Hasil analisis K-Ar terhadap percontoh batolit Singkawang menunjukan umur mutlak 116 sampai 128 juta tahun (Supriatna, dkk 1993).

Geo-Resources

Gambar 2. Peta geologi daerah penelitian (Supriatna dkk, 1993).

Kemudian, terjadi intrusi Sintang yang menerobos Formasi Pedawan, granodiorit Mensibau, dan Satuan Gunung Api Raya. Batuannya terdiri atas granodiorit, dan diorit kuarsa, berbutir halus sampai menengah. Kebanyakan terobosan adalah mikrodiorit porfiritik. Granodiorit dengan fenokris horenblenda, piroksen, felspar, dan setempat kuarsa. Terobosan-terobosan ini berupa stok, sumbat, retas, sil pascatunjaman yang berasosiasi dengan emas. (Supriatna dkk., 1993).

Endapan yang paling muda berupa aluvium tersebar di daerah aliran Sungai Behe bagian hilir, aliran Sungai Menyuke dan Sungai Landak bagian tengah dan hilir yang berumur Kuarter. Endapan ini terdiri atas lumpur, pasir, kerikil, dan sisa-sisa tumbuhan. Di beberapa tempat, sekitar aliran Sungai Landak dan cabang-cabangnya ditemukan emas dan intan. Lingkungan pengendapan adalah sungai dan dataran banjir.

INTAN SEKUNDER DI DAERAH PENELITIAN

Secara teoritis, intan primer terbentuk dalam batuan ultrabasik paling dalam (Kimberlit atau Lamprorite pipe) yang kemudian oleh gaya endogen diangkat ke atas. Kemudian batuan Kimberlite atau Lamproite tersebut oleh gaya eksogen dirombak (tererosi). Intan yang mempunyai kekerasan 10 skala Mohs sangat tahan terhadap pelapukan, sehingga lepas dari batuan induk dan diendapkan di suatu tempat bersama-sama dengan batuan sedimen klastika berbutir halus sampai kasar (Bateman, 1962).

Di Kalimantan Selatan intan sekunder diendapkan dalam konglomerat Formasi Manunggul (Van Bemmelen, 1970), sedangkan di Kalimantan Barat belum ada penelitian rinci tentang asal intan sekunder. Tetapi berdasarkan wilayah sebaran penambang intan sekunder yang dilakukan oleh para penambang rakyat di Kalimantan Barat, intan sekunder hanya terdapat di sepanjang Sungai Landak dan Sungai Sekayam. Kedua sungai tersebut mengalir diatas Satuan Batupasir Landak berumur Tersier Awal. Oleh karena itu, penelusuran sedimen Kuarter di sepanjang Sungai Landak menjadi sasaran utama dalam penelitian ini.

Penelitian intan sekunder dalam periode ini dilakukan di sepanjang aliran Sungai Landak, mulai dari daerah Desa Sebirang sebelah selatan kota Ngabang, sampai ke daerah Serimbu di bagian hulu
(seluruh daerah ini termasuk ke dalam wilayah Kabupaten Landak). Sepanjang aliran sungai ini terdapat ratusan penambang intan yang melakukan kegiatannya, baik di sungai maupun di darat.

Penambangan intan sekunder di darat umumnya dilakukan dalam endapan teras dan endapan aluvium, sedangkan di sungai aktif mereka menambang di gosong pasir atau meander sungai. (Gambar 3, 4, dan 5).

Endapan teras yang terdiri atas pasir, kerikil, dan lempung tersebar setempat-setempat di sepanjang aliran Sungai Landak, mulai teras tua yang berumur Plio-Plistosen sampai teras muda berumur Plistosen Akhir (Aziz, 1996).

Hasil Penelitian

Untuk lebih terperinci mempelajari jenis mineral yang terdapat pada sedimen teras dan aluvium sekarang, telah diambil sebanyak 28 percontoh konsentrat mineral berat (HMC) yang diperoleh dari paritan endapan teras 1 , teras 2 , teras 3 , dan alluvium pada pertambangan rakyat, semua percontoh-percontoh ini telah dianalisis di laboratorium PSG (Tabel 1).

Hasil pengamatan mineral berat (HMC) dari ke-28 percontoh yang dianalisis menunjukkan secara umum mineral berat yang ditemukan di dalam endapan aluvium dan teras adalah magnetit, ilmenit, limonit, pirit, zirkon, rutil, lukoksen, garnet, emas, dan platina (Tabel 1). Magnetit hampir selalu hadir dalam setiap percontoh walaupun hanya sedikit, berbutir halus-sangat halus, berwarna hitam metalik dan mempunyai tingkat kemagnetan yang tinggi. Beberapa mineral magnetit memperlihatkan bentuk kristal oktahedron yang jelas. Seluruh percontoh selalu mengandung ilmenit, kecuali sebuah percontoh Teras-1 di lokasi 20 Blok Ngabang.

Kandungan ilmenit berkisar dari $2 \%-81 \%$, dan kandungan paling tinggi berasal dari endapan sungai aktif di muara Sungai Menyuke (SSB-02 lokasi 03) (Gambar 6). Urutan kedua dimiliki oleh percontoh dari lokasi 21, Serimbu (SSB-10) sebesar 55 \% dalam endapan aluvium. Beberapa percontoh mengandung limonit dengan kandungan dari $<1 \%$ 25\%. Percontoh yang mengandung limonit paling tinggi adalah soil laterit dari lokasi 39 Blok Serimbu. Tujuh dari 28 percontoh konsentrat mengandung pirit dengan kandungan dari $<1 \%-15 \%$. Percontoh

Gambar 3. Peta sebaran endapan teras dan aluvium di sekitar aliran Sungai Landak.

Gambar 4. Peta lokasi dan sebaran sedimen Kuarter Blok Serimbu.

Gambar 5. Peta Iokasi dan sebaran sedimen Kuarter Blok Kualabehe.

Tabel 1. Hasil Analisis Mineralogi Butir Terhadap 28 Percontoh Konsentrat

No.	Nomor	Lokasi		\% terhadap contoh konsentrat											
				Magnetit	Bmenit	Limonit	Pint	Zinon	Rutil	Lukoksen	Gamet	Kuarsa	Emas	Platina	Intan
1	SSB-01	Ngabang	01	0.89	14.87	-	*	7.93	9.91	0,99	0.99	64,42	1 btr	-	ada *
2	SSB-02	\therefore	03	7.60	81,31	0,93	*	2,77	1,85	-	0.92	4,62	5 btr	*	ada .
3	SSB-03A	\therefore	05	0.55	14.92	-	-	2,98	4,97	0,99	1.00	74,59	1 btr	2 btr	ada *
4	SSB-03B	\therefore	05	0.19	7,98	*	-	2,00	2.99	0.99	1.01	84,84	-	-	d
5	5SB-04	\therefore	06	0.19	1.90	-	-	-	-	0,98	-	96,84	*	-	*
6	SSB-06	\therefore	11	-	8,25	-	*	2,18	3,65	1,36	0.92	83,64	*	-	ada *
7	SSE-07	\therefore	15	1,02	7,98	0,18	*	69,16	4,94	-	1.30	14,82	0,60	=	ada *
8	SSE-08	\therefore	16	0.57	1,98	-	-	-	-	0,98	-	97,45	-	-	-
9	SSB-09	\therefore	20	1.00	-	-	*	-	*	-	-	99,00	-	-	-
10	SSB-10	Serimbu	21	3.47	54,90	0,07	4,82	4.82	1.93	-	0.97	28,94	8 btr	-	ada *
11	SSB-11A	\therefore	22	.	3,74	-	-	-	-	0.87	*	94,64		-	ada
12	SSB-11B	\therefore	22	24,88	38,05	2.75	*	18,65	3,73	-	0.75	11,19	15 btr	1 ber	ada .
13	SSB-12	\therefore	27	-	2,88	3,10	-	-	-	-	-	94,02	*	-	ada .
14	SSB-13	\therefore	29	0,55	6.73	1,92	2,88	0,96	1.92	3.84	*	81,20	-	-	ada *
15	SSB-14	\therefore	31	0.99	7.92	1,98	-	2,97	1.98	0.99	-	83,17	*	*	-
16	SSB-15	\therefore	34	0,08	2.99	-	-	0,92	-	4.95	*	91,06	*	-	ada *
17	SSB-16	\therefore	35	-	1,68	24,80	*	-	*	-	-	73.52	-	-	-
18	SSB-17	\therefore	39	*	0.85	25,22	-	*	*	-	-	73,93	-	.	-
19	SSB-18	\therefore	42	2,86	34,00	-	*	48,57	4,86	-	0.97	8.74	1 btr	-	ada .
20	SSB-19	\therefore	43	0,29	4.98	-	1,02	1.99	2.99	0.99	-	87,74		-	ada -
21	SSB-20	Kualabehe		0.59	11,92	2.98	-	-	1,35	0,82	*	82,34	*	-	8
22	5SB-21	\therefore	51	1,93	44,13	-	0,98	9.81	7.84	-	0,99	34,32	-	-	ada .
23	SSB-22	Serimbu		0.05	7.99	14,62	-	0.95	1,80	-	-	74,59	-	-	ada .
24	SSE-23	\therefore	53	0,70	11,92	6.95	4.26	0.98	1,84	*	0.65	72,70	-	-	ada *
25	358-24A	Kualabehe 5		-	3.72	1,15		*	-	-	-	95,13	*	*	*
26	SSB-248	\therefore	54	2.62	34.08	.	14,61	4.87	1,95	*	0,97	40.90	3 btr	-	ada *
27	SSB-25	$\therefore 5$	55	4.98	57.01	*	-	14,25	7.60	-	0.96	15,20	-	*	ada *
28	SSB-26	$\therefore \quad 57$	57	0.31	14.95	-	11,96	2,62	-	*	0,84	69.32	*	*	ada *

* intan ditemukan oleh penambang lokal
yang mengandung pirit tertinggi adalah SSB-26 dari endapan sekunder lokasi 57 Blok Kualabehe.

Berdasarkan grafik persentase kandungan mineral berat (Gambar 7), zirkon dan rutil hadir di sebagian besar percontoh dengan kandungan masing-masing zirkon dari $<1 \%-69 \%$, dan $1 \%-10 \%$. Zirkon yang ditemukan berwarna merah jambu (pink) dan bening dengan bentuk kristal euhedral (Gambar 8).

Dua percontoh konsentrat mengandung zirkon cukup tinggi yaitu SSB-07 (Gambar 3) dan SSB-18 (Gambar 4), masing-masing sebesar 69\% dan 48\%. Percontoh SSB-07 diambil dari lokasi 15 Sebirang, Ngabang dalam endapan aluvium, sedangkan SSB18 dari lokasi 42 Temoyok, Serimbu juga dalam endapan aluvium.

Kandungan rutil paling tinggi dimiliki oleh percontoh SSB-01 (Gambar 3) dan SSB-21 (Gambar 5) yang berwarna merah tua kecoklatan. Lukoksen adalah mineral berwarna putih susu sampai kecoklatan dengan rumus kimia sama dengan rutil yaitu TiO_{2}. Mineral ini biasanya terbentuk dari hasil proses dekomposisi ilmenit. Percontoh konsentrat yang mengandung lukoksen tinggi adalah SSB-13 (Gambar 8) dan SSB-15 (Gambar 4) dari daerah Rikip, Serimbu. Kandungan masing-masing

Gambar 6. Foto Mineral ilmenit dalam percontoh SSB-02.
mineralnya adalah 4\% dan 5%. Garnet ditemukan di beberapa percontoh dengan kandungan kurang dari 2%, berwarna merah jambu sampai merah tua berbentuk hampir bundar .

Bagi para penambang, intan merupakan tujuan utama dalam penambangannya, namun mineral berharga seperti emas dan platina sangat diharapkan dapat menutupi biaya operasionalnya. Pencarian emas lebih mudah daripada intan dan platina karena

Gambar 7. Grafik persentase kandungan mineral berat.
batuan sumber emas boleh jadi lebih banyak daripada intan. Ada tujuh percontoh konsentrat dulang yang mengandung butiran emas, yaitu SSB01, 02, 03A, 07, 10, 11B (Gambar 3) dan 18 (Gambar 4). Platina hanya ditemukan dalam percontoh SSB-3A sebanyak 2 butir. Percontoh tersebut berasal dari endapan teras 3 lokasi 05 dekat muara Sungai Belancian. Meskipun hasil analisis percontoh konsentrat tidak mengandung intan, akan tetapi dalam Tabel 1 dicatat ada intan. Hal ini dilakukan karena percontoh-percontoh konsentrat tersebut diambil dari lokasi tambang-tambang rakyat yang pernah menghasilkan intan. Karena untuk menemukan intan dalam endapan aluvium diperlukan pengambilan percontoh dalam jumlah yang besar, kita harus melakukan bulk sampling. Tapi dalam penelitian ini hal itu tidak dilakukan. Namun demikian, dari hasil pengamatan di lapangan intan banyak ditemukan oleh para penambang lokal.

Pembahasan

Sampai sekarang belum ada yang bisa menjelaskan dari mana asal intan sekunder di Kalimantan Barat, karena belum diketemukan batuan Kimberlite atau Lamproite sebagai batuan induk di Kalimantan.

Gambar 8. Foto Mineral garnet dan rutil.

Namun, dengan mengamati intan-intan yang ditemukan oleh penambang intan di sepanjang aliran Sungai Landak, yang morfologi butirannya membulat tanggung sampai membulat, dan tidak berbentuk kristal oktahedral sebagaimana bentuk kristal intan yang sempurna, maka bentuk morfologi butiran intan seperti ini mengindikasikan intan tersebut sudah mengalami transportasi yang cukup jauh atau telah terjadi beberapa kali erosi dan pengendapan kembali atau reworked beberapa kali. (Gambar 9).

Gambar 9. Butiran intan yang terdapat di daerah penelitian.
Mengamati bentuk morfologi butir yang membulat sampai membulat tanggung Kemungkinan besar intan sekunder di Kalimantan Barat telah tererosi begitu jauh atau berasal-dari erosi batuan sedimen atau batupasir yang lebih tua yang berbutir sedang, kasar sampai kerakal. Jenis satuan batuan yang terdapat di daerah penelitian adalah Satuan Batupasir Landak, berupa pasir kuarsa, litik, Berbotir menengah sampai kasar. Batuan ini umumnya terpilah buruk dengan lingkungan pengendapan darat. Di atas satuan batuan inilah Sungai Landak mengalir.
Berdasarkan pengamatan di lapangan dapat direkontruksikan bahwa sedimen Kuarter baik berupa sedimen teras maupun endapan aluvium yang mengandung intan di wilayah ini terbatas sekitar 5 km dari kanan kiri aliran Sungai Landak yang sekarang. Dan berdasarkan citra landsat dapat dipelajari bahwa aliran perpindahan Sungai Landak di blok Ngabang bergerak dari timur ke barat, blok Kualabehe dari dari barat-laut ke tenggara dan blok Serimbu dari utara ke selatan.

Terbatasnya sebaran ini dapat dijelaskan karena sejak awal Kuarter sampai sekarang permukaan air laut secara global naik turun beberapa kali, dan ketinggian topografi di daerah penelitian berkisar 50 meter dari permukaan laut, (Tjia, dkk., 1977), sehingga pengaruh naik turunnya permukaan laut terhadap wilayah ini cukup besar, dan terbentuklah beberapa teras dalam lembah proto landak di sepanjang sungai ini. Hal ini penting untuk diketahui karena sebaran intan di Kalimantan Barat terbatas dalam pola aliran Sungai Landak dan sebagian kecil di Sungai Sekayam bagian utara. Hewitt dan Veel (1989), melaporkan keterdapatan intan di Serawak,

Gambar 10. Korundum ukuran kerikil penyerta intan yang populer di kalangan penambang intandi Kabupaten Landak.

Malaysia, berarti intan terdapat juga di utara daerah penelitian, tetapi sampai sekarang belum ada penelitian terperinci tentang keberadaan intan tersebut.

Dalam penelitian ini, dari 28 percontoh yang dianalisis sulit menentukan indikasi mineral yang berasosiasi dengan intan secara ilmiah, karena mineral yang terkandung di dalam konsentrat mineral berat (HMC) hampir merata, meskipun dalam percontoh ini ditemukan mineral garnet dalam jumlah yang merata, tidak satupun dari percontoh yang dianalisis mengandung mineral pyrop garnet yang selama ini merupakan asosiasi mineral utama yang selalu digunakan untuk mencari intan primer.
Secara tradisional para penambang lokal mengindikasikan mineral yang berasosiasi dengan intan di daerah ini sering menggunakan indikator ada tidaknya mineral ikutan korundum (lebur), korundum berwarna hitam kebiruan (lebur terusi) dan korundum berwarna coklat (jantak). Korundum ini umumnya berukuran pebble, berbentuk bulat-sangat bulat dan cukup berat (Gambar 10). Batuan jenis ini disebut batuan tetimahan (Usna, 1976), di Cempaka, Kalimantan Selatan.

Tidak ditemukan mineral assosiasi intan seperti pyrop garnet, dalam penelitian ini dapat dipahami karena mineral ini tidak resistant terhadap pelapukan sebagaimana dibandingkan yang terjadi pada intan, apalagi intan sekunder yang terdapat di Kalimantan Barat ini dilihat dari bentuk morfologinya sudah membundar. Ini berarti sudah mengalami transportasi yang cukup jauh atau reworked beberapa kali, yang menyebabkan kalau ada mineral pyrop garnet tersebut habis tererosi. Oleh karena itu untuk menemukan intan primer masih sulit ditelusuri.

Kalau benar intan sekunder di Kalimantan Barat berasal dari erosi Satuan Batupasir Landak, maka untuk menemukan intan primer di daerah ini perlu dilakukan tahapan penelitian yang lebih terperinci pada Satuan Batupasir Landak, dengan membuat testpit pada Satuan Batupasir Landak, terutama yang berada di sekitar aliran Sungai Landak bagian hulu, apakah dalam satuan batuan ini terdapat intan. Kalau dalam penelitian tersebut diketemukan intan maka tahapan selanjutnya untuk menelusuri intan primer diperlukan penelitian arah sumber material yang membentuk Satuan Batupasir Landak dan ini dapat dipelajari dari arus purbanya.

Selama penelitian di lapangan, intan yang ditemukan di daerah ini oleh penduduk setempat kurang dari 2 karat, kebanyakan berbutir sangat halus kurang dari 0,33 karat. Rutten (1927) pernah melaporkan bahwa intan terbesar yang pernah ditemukan di daerah sekitar aliran Sungai Landak mencapai 40 karat. Lebih lanjut Rutten (1927) menambahkan di daerah ini terdapat juga mineral sfen, kromit, dan rubi. Intan yang terdapat dalam endapan kerikil sering berasosiasi dengan batuan berwarna gelap/ hitam yang biasa disebut dengan istilahlebur. Selain itu berasosiasi pula dengan mineral-mineral seperti korundum, turmalin, garnet, spinel, zirkon, topas dan kuarsa keabuan serta kebiruan.

KESIMPULAN

- Intan dan emas sekunder di daerah aliran Sungai Landak yang termasuk Kabupaten Landak, Kalimantan Barat ditemukan dalam endapan teras, yaitu : teras 1, teras 2, teras 3, dan endapan aluvium. Penambangannya dilakukan dengan cara sedot, dompeng, kupas, dan gali. Intan terbesar yang pernah ditemukan oleh para penambang dalam endapan teras 3 di daerah Serimbu sebesar 17 karat. Di dalam ketiga endapan teras tersebut ditemukan pula butiran emas.
- Komposisi mineral endapan teras 1 sebagian besar terdiri atas kuarsa, sedangkan teras 2 dan teras 3 selain kuarsa terdapat pula magnetit
ilmenit, limonit, pirit, zirkon, rutil, lukoksen, garnet, dan emas. Dalam penelitian ini intan banyak ditemukan hanya dalam endapan teras 3 dan dalam endapan sungai aktif.
- Berdasarkan rekonstruksi sebaran sedimen Kuarter dan interpretasi Citra Landsat, secara umum perpindahan aliran Sungai Landak di Blok Ngabang bergerak dari timur ke barat, di Blok Kualabehe dari barat laut ke tenggara dan di Blok Serimbu dari utara ke selatan kemudian kembali ke arah utara lagi. Pergeseran ini tidak melebihi 10 km dalam lembah Sungai Landak.
- Meskipun kandungan mineral berat yang terdapat dalam percontoh daerah penelitian tidak mempunyai pola sebaran yang jelas dan sulit mengindikasikan daerah akumulasi intan, hal ini dapat dimengerti karena intan yang terdapat dalam sedimen Kuarter sudah reworked beberapa kali. Namun demikian peta sebaran intan hasil penelitian di sepanjang Sungai Landak dan Sekayam merupakan data awal yang penting dalam melakukan penelitian lanjut untuk mengetahui batuan sumbernya (source rock).

SARAN

Sebaiknya penelitian intan sekunder di daerah Ngabang ditindaklanjuti lebih terperinci, terutama di Sungai Ngabang, untuk mengetahui dengan pasti batas akhir terdapatnya intan sekunder. Kemudian dibuatkan testpit padá Satuan Batupasir Landak. Data tersebut dapat digunakan untuk mengetahui batuan sumber intan di Provinsi Kalimantan Barat.

UCAPAN TERIMA KASIH

Ucapan terima kasih penulis sampaikan kepada Kepala Pusat Survei Geologi yang telah memberi izin untuk mempublikasikan makalah ini. Penulis mengucapkan terima kasih kepada saudara-saudara Suminto, Jamal dan Sukido yang telah memberikan masukan serta data yang sangat berharga dalam penyelesaian makalah ini.

ACUAN

Aziz, S., 1996. Studi Terrace Kuarter dan Undak-undak Pantai serta hubungannya dengan Emas Placer di Kalimantan Barat. P.T. Timah, Eksplorasi Non Timah.(unpublished report).
Bateman A.M., 1962. Economic Mineral Deposits. New York. John Wiley \& Sons, Inc. Tokyo. Charles E. Tuttle Company.
Bemmelen, R.W.van, 1970. The Geology of Indonesia, 2 vols., 2 nd edn. Martinus Nijhoff, The Hague.
Hewitt W.V and Veel T.R., 1989. Report on the Sarawak Visit.
Rutten, M., L.M.R., (1927). Lectures on the Geology of the Netherlands East Indiest. Groningen den Haag, 1927. (Translation from the Dutch).

Supriatna S., Margono U., Sutrisno, Pieters P.E. dan Langford R.P., 1993. Peta Geologi Lembar Sanggau, Kalimantan, skala 1: 250.000. Pusat Penelitian dan Pengembangan Geologi, Bandung.
Tjia, H.D., Fujii., S. and Kigoshi, K., 1977. Changes of sea-level in the southern South China Sea area during Quaternary times. Proc. Symp. Quat. Geol. Malay-Indon. Coast. Offshore Areas, CCOP/TP5 1136.

Usna I., 1976. Aspek Pertambangan Intan Rakyat di Daerah Kabupaten Martapura, Kalimantan Selatan. Proyek Sarana Pembinaan Hukum Pertambangan. Subdit Perpetaan, Direktorat Geologi.

