DEFORMASI LANDFORM PASCAGEMPA TEKTONIK JOGJAKARTA 27 MEI 2006

Santoso
Pusat Survei Geolog
JI. Diponegoro No. 57 Bandung - 40122

SARI

Gempa bumi tektonik Jogjakarta 27 Mei 2006 mengakibatkan jatuhnya korban 6000 jiwa manusia dan kerugian materiil yang berupa hancurnya rumah penduduk, gedung pemerintah, gedung sekolah, sarana peribadatan, dan infrasuktur yang jumlahnya cukup besar. Selain itu, terjadi dampak lain yakni perubahan bentuk lahan di sepanjang Jalur Sesar Opak dan sesar Patuk yang berupa rekahan tanah dan longsoran/jatuhan batu, serta pelulukan pada sumur penduduk.
Dari hasil identifikasi di lapangan, baik perubahan bentuk lahan maupun pola kerusakan, dapat ditarik dua garis imajiner, yaitu: Jalur Sesar Opak dan Jalur Sesar Patuk. Jalur Sesar Opak memanjang dari muara Sungai Opak hingga Prambanan dengan arah umum barat daya - timur laut, sedangkan Jalur Sesar Patuk memanjang dari Parangtritis - Patuk hingga Gantiwarno/Wedi, Kabupaten Klaten dengan arah N40-45 ${ }^{\circ}$ E.

Kata kunci: perubahan bentuk lahan, gempa bumi

ABSTRACT

The tectonic earthquake of Jogjakarta 27 Mei 2006 caused damages and more than 6000 people died. The damage include houses, office buildings, public service, and other infrastructure. On the other hand, the earthquake causes landform deformation along the Opak Fault Zone and Patuk Fault Zone, such as land crack, rock slide/fall, and liquefaction in a dug well.

Based on field identification of the landform deformation and damage pattern, two imaginary lines namely Opak Fault Zone and Patuk Fault Zone can be traced. Opak Fault Strip elongates from end of the Opak River to Prambanan with general direction NW-SE, while the Patuk Fault Strip elongates from Parangtritis-Patuk to Gantiwarno/Wedi, Klaten Regency with direction N40-45 ${ }^{\circ} \mathrm{E}$.

Keywords: landform deformation, earthquake

PENDAHULUAN

Wilayah Jawa Tengah bagian selatan dan Daerah Istimewa Jogjakarta merupakan salah satu Daerah Rawan Bencana Gempa Bumi Indonesia, dan telah ditentukan sebagai wilayah rawan bencana gempa bumi Nomor VII. Tercatat tidak kurang dari empat kali gempa bumi merusak pernah terjadi di daerah ini (1867, 1943, 1981 dan 2006) (Soehaimi dkk., 2006).

Tanggal 27 Mei 2006 pukul 5.54.01 (WIB) menjelang fajar kota Jogjakarta, termasuk di dalamnya wilayah Kabupaten Bantul, Sleman, Gunung Kidul, Kulon Progo, dan Klaten (Jawa Tengah), diguncang oleh gempa bumi kuat berkekuatan 6,2 MM (Moment Magnitude) atau setara dengan 5,9 SR (Skala Richter), berkedalaman $17,1 \mathrm{~km}$ (NEIC,USGS). Gempa bumi tersebut
berpusat di muara Sungai Opak, $\pm 20 \mathrm{~km}$ selatan kota Jogjakarta, dan telah mengakibatkan kerusakan yang sangat serius di keenam wilayah tersebut di atas. Tercatat 6000 korban (meninggal, luka berat dan ringan) dan lebih dari 7000 infrastruktur berupa rumah penduduk, serta fasilitas umum lainnya seperti hotel, stasiun kereta api, bandara, sekolah, bahkan jembatan mengalami rusak ringan hingga berat. Hingga tanggal 2 Juni 2006 tercatat ± 1037 kali gempa susulan dengan kekuatan kurang dari 4 SR (BMG Jogjakarta) (Soehaimi dkk., 2006).

Dalam enam bulan, ada empat kali gempa bumi melanda daerah Jogjakarta. Pertama terjadi bulan Desember 2005 dengan skala 3,9. Gempa kedua terjadi bulan Januari 2006 dengan skala 4,5 , kemudian disusul bulan April 2006 dengan skala 4,6. Ketiga gempa tersebut masih berpusat di

Samudra Indonesia, kurang lebih 50 km selatan Jogjakarta. Di sini terlihat bahwa kekuatan gempa makin meningkat, dan gempa yang terbesar terjadi tanggal 27 Mei 2006. Catatan lain bahwa pada bulan Mei 2001 juga terjadi gempa bumi dengan skala 6,3 yang berpusat di daerah Nanggulan, Kulon Progo. Gempa tersebut relatif dalam, sehingga tidak menimbulkan kerusakan yang berarti. Adanya gempa-gempa awal yang terjadi di sekitar Jogjakarta agaknya bisa menjadi pertanda agar kita mewaspadai terjadinya gempa yang lebih besar.
USGS, EMSC (Eropa) dan BMG menyatakan bahwa penyebab terjadinya gempa bumi Jogjakarta yang lalu adalah Sesar Opak dengan arah barat dayatimur laut yang membentang dari Parangtritis hingga Prambanan dengan gerakan mendatar mengiri. Untuk mengetahui lebih jauh tentang dimensi Sesar Opak ini perlu dilakukan penelitian yang terpadu, salah satunya adalah penelitian beraspek geomorfologi.

Berdasarkan fenomena alam dan pemikiran tersebut, maka Pusat Survei Geologi, Badan Geologi, Departemen Energi dan Sumber Daya Mineral telah melakukan penelitian di bidang geologi dan geomorfologi, khususnya dengan pendekatan morfostruktur/tektonik.

Maksud penelitian geomorfologi ini adalah untuk melakukan penelitian, inventarisasi, evaluasi, dan analisis data tentang gejala yang berhubungan dengan perubahan morfologi permukaan akibat adanya sesar aktif yang menimbulkan gempa bumi tektonik daerah ini.

Sementara itu, tujuan penelitian ini adalah:

- Menentukan lajur sesar aktif yang merupakan penyebab terjadinya bencana gempa bumi dengan mencari data lapangan yang berhubungan dengan penampakan geomorfologi, khususnya deformasi landform dan morfostruktur.
- Menginventarisasi gejala-gejala adanya kegiatan/aktivitas tektonik, baik masa lalu maupun sesudah terjadinya gempa bumi 27 Mei 2006.
- Menginventarisasi data dasar kebumian yang beraspek geomorfologi, dan kaitannya dengan rencana pembangunan kembali daerah bencana.

Penelitian ini dilakukan melalui dua tahapan, yakni :

1. Interpretasi foto udara dan citra lainnya untuk mengidentifikasi karakteristik bentuk lahan yang berhubungan dengan aktifitas sesar aktif.
2. Pengamatan lapangan untuk mengidentifikasi kondisi bentang alam dan infrastruktur akibat gempa bumi.

Daerah penelitian secara administratif termasuk ke dalam wilayah Provinsi Jawa Tengah dan Daerah Istimewa Jogjakarta yang mencakup Kabupaten Bantul, Gunung Kidul, Sleman, Kulon Progo, serta Klaten (Gambar 1). Secara geografis daerah ini dibatasi oleh koordinat $110^{\circ} 15^{\prime} \mathrm{BT}-110^{\circ} 30^{\prime} \mathrm{BT}$ dan $07^{\circ} 45^{\prime}-08^{\circ} 05^{\prime} \mathrm{LS}$, termasuk ke dalam peta geologi Lembar Jogjakarta. Namun dalam pelaksanaan kegiatan lapangan sesuai dengan tujuan penelitian, maka pengamatan lapangan dilakukan pada lokasi-lokasi terpilih. Daerah penelitian ini dapat dicapai dengan menggunakan kendaraan, baik roda dua maupun roda empat, dengan kondisi jalan beraspal baik hingga ke kampung-kampung, namun kadang-kadang harus menyusuri sungai.

KONDISI FISIK LAHAN

Geologi

Daerah penelitian termasuk ke dalam peta geologi Lembar Jogjakarta skala 1:100.000 yang disusun oleh Rahardjo, Sukandarrumidi dan Rosidi (1995). Daerah ini tersusun oleh batuan yang umurnya berkisar dari Oligosen hingga Resen (Gambar 2).
Batuan tertua terdiri atas perselingan breksi-tuf, breksi batuapung, tuf dasit, tuf andesit, serta batulempung tufan yang termasuk Formasi Semilir (Tmse). Secara selaras formasi batuan ini ditindih oleh Formasi Nglanggran (Tmn) yang berumur Miosen Awal. Formasi ini terdiri atas breksi gunung api, breksi aliran, aglomerat, lava, dan tuf. Berikutnya Formasi Nglanggran tertindih oleh Formasi Sambipitu (Tms) berumur Miosen Tengah yang terdiri atas tuf, serpih, batulanau, batupasir, dan konglomerat.

Di atas Formasi Sambipitu diendapkan Formasi Kepek (Tmpk) yang berumur Pliosen. Formasi ini terdiri atas napal dan batugamping berlapis yang menjemari dengan Formasi Wonosari (Tmwl), berumur Miosen Alkhir - Pliosen, terdiri atas batugamping terumbu, kalkarenit, dan kalkarenit tufan.

Geo-Dynamics

Selain itu, dari Miosen Akhir - Pliosen diendapkan pula Formasi Sentolo yang terdiri atas batugamping dan batupasir napalan. Formasi ini terdapat di bagian barat daerah penelitian.

Hampir seluruh dataran Jogjakarta- Bantul tertutup oleh batuan Kuarter produk Gunung Merapi Muda yang terdiri atas tuf, abu vulkanik, breksi, aglomerat, dan lava tak terpisahkan. Batuan paling muda adalah satuan aluvium (Qa) yang terdiri atas kerakal, kerikil, pasir, lanau, dan lempung di sepanjang sungai yang besar dan pasir dari gumuk pantai pematang pantai.

Struktur Geologi

Struktur geologi yang dapat diamati di daerah ini terdiri atas struktur kekar, lipatan dan sesar. Struktur kekar umumnya dapat dijumpai pada batu-batuan yang telah mengalami pensesaran. Sedangkan struktur lipatan dijumpai berarah hampir barat timur, pada umumnya bersifat miring searah ke utara. Struktur sesar utama di daerah ini mempunyai arah utama yakni barat daya-timur laut. Zona sesar ini sebenarnya sudah lama diketahui dan dipetakan oleh para ahli geologi. Rahardjo dkk.
(1995) juga sudah memetakan zona ini pada Peta Geologi Lembar Jogjakarta (Gambar 2). Sesar ini memisahkan dataran tinggi Wonosari dengan dataran rendah Jogjakarta dan Bantul yang merupakan terban. Setelah terjadinya gempa 27 Mei 2006, struktur sesar yang berkembang dan dinyatakan aktif yakni berarah barat daya - timur laut yang notabene merupakan Sesar Opak. Sesar utama ini (barat daya - timur laut) merupakan sesar mendatar mengiri dengan blok sebelah barat bergerak ke selatan, sedangkan blok sebelah timur bergerak ke utara. Sesar-sesar penyeimbang yang berarah barat laut - tenggara dijumpai berupa sesar geser turun yang dapat diamati pada bentang alam kawasan di sekitar lajur sesar. Lebih lanjut sesar utama (barat daya - timur laut) diduga terbagi atas beberapa segmen yang dikontrol oleh sistem sesarsesar yang berarah hampir barat - timur. Selain sesarsesar tersebut di atas, dijumpai pula sesar-sesar gempa yang terbentuk pada saat terjadinya gempa bumi tanggal 27 Mei 2006 berupa sesar naik, sesar geser, dan sesar normal dalam ukuran meter hingga ratusan meter. Arah gaya pembentuk sesar gempa tersebut bervariasi, pada umumnya berarah utara selatan dengan kisaran 30° ke arah timur dan barat.

Gambar 1. Peta lokasi penelitian (Jogjakarta) dan sekitarnya.

Gambar 2. Peta geologi daerah Jogjakarta dan sekitarnya (Rahardjo, Sukandarumidi, dan Rosidi, 1995)

KETERANGAN

Teon	Formasi Nanggulan	Tmps	Formasi Sentolo	Qa	Aluvium
Tmse	Formasi Semilir	Tmpk	Formasi Kepek		Andesit
Tmn	Formasi Nglanggran	Tms	Formasi Sambipitu		Sesar
Tmwl	Formasi Wonosari	Qmi	Endapan Gunung Api Muda Merapi		

Geomorfologi

Kondisi morfologi daerah Jogjakarta dan sekitarnya secara umum dapat dibagi ke dalam enam bentukan asal, yakni (Gambar 3):

- Bentukan asal vulkanik yang terdiri atas dua bentuk lahan/landform, yakni dataran vulkanik Merapi dan bukit intrusi.
- Bentukan asal struktur terdiri atas pegunungan struktur, perbukitan struktur, gawir sesar, dan perbukitan sinklin.
- Bentukan asal denudasi, terdiri atas perbukitan berpuncak membundar, bukit terpencil/isolated hill, bukit sisa/residual hill, lereng rombakan/ debris slope, dan lahan kritis sungai
- Bentukan asal marin terdiri atas kompleks pematang pantai dan kompleks gumuk pasir.
- Bentukan asal kars berupa perbukitan kars kerucutan (conical karst hills), yang dikenal sebagai Pegunungan Seribu.
- Bentukan asal fluviatil berupa dataran aluvium.

Morfotektonik

Morfotektonik merupakan fosil dinamika tektonik yang berlangsung pada zaman Kuarter hingga kini. Penampakan morfotektonik di lapangan yang dapat dijumpai di daerah ini di antaranya:

- Pematang pantai/beach ridges di sepanjang pantai selatan wilayah Kabupaten Kulon Progo Bantul. Dari hasil identifikasi lapangan dapat dikenali sebanyak delapan lajur, yang tertua dapat dikenali pada pintu gerbang wisata pantai Samas. Jarak antara pematang satu sampai empat relatif sama, yang ditandai oleh adanya sumur gali. Namun dari pematang pantai ke empat ke arah daratan jaraknya makin lebar dan jarak terlebar terdapat pada pematang pantai ketujuh. Jarak antara pematang pantai ketujuh dan delapan mencapai $\pm 100 \mathrm{~m}$ berupa rawa yang sekarang sebagian sudah dimanfaatkan untuk sawah dan ladang.
- Teras Sungai. Teras Sungai Opak dapat dijumpai di sepanjang sungai dari wilayah Kretek ke arah hulu sebanyak 2-3 buah. Di samping itu di semua
cabang Sungai Opak yang meliputi Sungai Oyo, Petir, Code, Gajahwong, dan Tambakbayan ditemukan adanya teras sungai. Kipas aluvium dan beting-beting terdapat di Sungai Opak dan Sungai Progo. Hasil pengukuran ketinggian masing-masing teras di ST 2 dari atas adalah 2 $\mathrm{m}, 1,5 \mathrm{~m}$, dan terbawah 2 m dari dasar sungai.

Sungai Tambakbayan/Mruwe mempunyai dua teras, teras 1 tingginya 3 m dari teras 2 , dan teras 2 tingginya 5 m dari dasar sungai (ST 66).

- Pergeseran arah aliran Sungai Opak dapat dijumpai di Dusun Ngentakmejing (ST No. 49), yang perpindahannya cukup signifikan, yakni sebanyak empat kali dalam kurun waktu Kuarter. Teras sungai. 1 terletak pada elevasi 116 m (dpl), teras 2 berelevasi 110 m , teras 3 berelevasi 107 , dan teras 4 elevasinya 103 m , sedangkan elevasi Sungai sekarang berada pada elevasi 100 m (dpl). Sungai 1 lebarnya 200 m, sungai 2 lebarnya 100 m , sungai 3 lebarnya 70 m . Arah perpindahan sungai mengarah ke tenggara.
Morfotektonik lain yang dapat dikenali di antaranya lajur gawir sesar, facet segitiga, lereng rombakan (debris slope), kipas-kipas rombakan, lereng-lereng talus (scree slope), berkembangnya dataran aluvium seperti di muara Sungai Oyo (Dusun Siluk), sebelah timur Dusun Cangkring, sebelah timur Dusun Segoroyoso. Morfologi seperti ini merupakan indikasi adanya sesar aktif yang memungkinkan berkembangnya dataran aluvium dan kipas aluvium. Semua gejala ini dapat ditemukan di sepanjang perbukitan di sebelah timur daerah penelitian, yang ditempati oleh batuan berumur Tersier.
- Mata air panas Parangwedang (Parangtritis) yang tidak berhubungan dengan aktifitas vulkanik atau pascavulkanik, namun disebabkan oleh sesar. Kemungkinan ruang di bawah terban diisi oleh magma, tetapi bidang sesarnya masih cukup kuat untuk menahan tekanan magma hingga tidak muncul ke permukaan. Meskipun demikian, magma di bawah terban masih mampu memanaskan akuifer air bawah tanah, yang kemudian keluar melewati bidang sesar sebagai mata air panas seperti keadaan sekarang.

Gambar 3. Peta geomortologi daerah Jogiakarta dan sekitarnya.

DEFORMASI LANDFORM AKIBAT GEMPA BUMI

Gempa bumi yang menggoncang daerah Jogjakarta dan sekitarnya 27 Mei 2006 tidak hanya merusak bangunan gedung, rumah penduduk, tetapi juga merubah morfologi atau bentuk roman muka bumi. Daerah-daerah yang berlereng curam, dalam kondisi kritis menjadi tempat-tempat berbahaya ketika terjadi goncangan gempa. Gambar 4, adalah peta kecuraman lereng memperlihatkan tempat-tempat yang memiliki lereng curam yang dikeluarkan oleh BAISDA DIJ (Badan Informasi Daerah). Di bagian tengah berwarna hijau adalah wilayah kota Jogjakarta, Bantul, dan Sleman. Artinya wilayah ini relatif landai $\left(<5^{\circ}\right)$, sedangkan bagian timur dan barat merupakan wilayah perbukitan dan pegunungan yang berlereng curam (warna merah). Pada peta longsoran (rock slide, rock fall) yang dibuat oleh Karnawati dan Fathoni (2006), akibat gempa yang lalu umumnya terkonsentrasi di wilayah bagian timur sesuai dengan peta kecuraman lereng, namun wilayah bagian barat relatif tidak ditemukan gejala seperti halnya di bagian timur (Gambar 5).
Pada hasil identifikasi lapangan mulai dari Parangtritis ke timur laut hingga Prambanan, banyak ditemukan bukti adanya perubahan morfologi akibat
gempa 27 Mei 2006, di antaranya rekahan tanah, longsoran/jatuhan batu, pelulukan, dan sebagainya. Semua stasiun pengamatan lapangan dapat dilihat pada Gambar 6.

Rekahan Tanah

Rekahan tanah akibat gema bumi yang lalu banyak ditemukan di daerah bencana. Secara umum pola rekahan yang teramati dapat dikelompokkan menjadi dua zona, yakni zona rekahan tanah di daerah rendahan dan daerah tinggian.

Rekahan tanah di daerah rendahan

Rekahan-rekahan tanah yang ditemukan di daerah rendahan umumnya terdapat di endapan teras sungai, seperti di Sungai Opak (ST 04, 36, 39, 48, $24,61,65$,), Oyo (ST 62), Gawe, Berjo (ST 27), Gajahwong (ST 59,60), Mruwe (ST 69,70), Code (ST 34, 63), dan Sungai Kotesan (ST 40,41,42). Di samping itu, banyak rekahan yang terdapat di perkampungan penduduk di antaranya : Dusun Nglarang, Baturetno (ST 71), Dusun Balong lor (ST 72), SPBU di JI. Lingkar Selatan (ST 73), Dusun Sareman (ST 74), Dusun Krapyak, Sewon (ST 75), Desa Kweni, Sewon (ST 76), Dusun Bibis, Kasihan (ST 77), dan Dusun Glondong, Kasihan (ST 78).

Gambar 4. Peta kemiringan lereng Daerah Istimewa Jogjakarta (Sumber: BAISDA DIJ, 2005).

Gambar 5. Peta tanah longsor pascagempa Jogjakarta 27 Mei 2006 (modifikasi dari Karnawati dan Fathoni, 2006).

Geo-Dynamics

Keterangan: $\begin{array}{ll}\kappa^{\top T} \\ r_{L_{t}}\end{array}$ Scarp debris/rombakan STS29 Stasiun pengamatan \because Sesar
Gambar 6. Peta lokasi pengamatan dan sesar Opak pascagempa Jogiakarta 27 Mei 2006.

Dari hasil pengamatan lapangan, gejala deformasi landform dan lainnya di daerah rendahan dapat dikelompokkan menjadi :

- rekahan tanah dengan bukaan
- rekahan tanah dengan pergeseran
- rekahan tanah dengan gerak turun
- pergeseran jembatan
- terbelahnya tonggak kayu jati
- terbelahnya rumpun bambu "ori"
- pembengkokan rel KA

Rekahan-rekahan tanah yang terdapat di ST-ST tersebut pada umumnya berupa bukaan dengan lebar berkisar $5-100 \mathrm{~cm}$, dengan arah umum $\mathrm{N} 20-60^{\circ} \mathrm{E}$. Rekahan tanah dengan bukaan selebar 100 cm ditemukan di Dusun Kotesan, Prambanan (ST 40). Selain itu, di ST-ST tertentu terdapat rekahan tanah dengan gerakan mendatar mengiri (ST 04, 05, 24, 41), dan gerakan menurun ada sekitar 6 jalur (ST 27).

Gejala lain yang ditemukan berupa pergeseran ujung jembatan Opak (Pleret) yang bergeser hingga 10 cm , dan badan jembatan bergeser mengiri selebar 5 cm dengan arah $\mathrm{N} 45^{\circ} \mathrm{E}$, sedangkan terdapatnya tonggak kayu jati yang terbelah selebar 10 cm terdapat di Dusun Berjo (ST 27). Pembengkokan rel KA akibat gempa terdapat di sebelah timur Stasiun Prambanan sepanjang $\pm 50 \mathrm{~m}$ (Foto 1-4).

Rekahan tanah di daerah tinggian

Deformasi landform pascagempa di daerah tinggian dapat dikelompokkan menjadi :

- rekahan tanah dengan bukaan
- pemunculan mata air
- rekahan jalan dengan pergeseran mendatar mengiri
Pada umumnya pola rekahan yang terdapat di daerah tinggian mempunyai kesamaan dengan di daerah rendahan, namun semua rekahan terdapat pada tanah yang relatif tebal. Rekahan-rekahan tanah yang ditemukan di antaranya terdapat di Dusun Patuk (ST 13), Soka (ST 14), Ngrancahan (ST 55, 56, 57), Ngantunan (ST 17), Pandeyan (ST 18), dan Dusun Jorong (ST 19) (Foto 5,6).

Semua rekahan tanah yang ditemukan pada umumnya menunjukkan arah yang hampir sama berkisar $\mathrm{N} 40^{\circ}-50^{\circ} \mathrm{E}$, lebar bukaan berkisar dari $10-30 \mathrm{~cm}$,
sedangkan rekahan tanah yang ditemukan di Patuk mempunyai tiga jalur dengan arah yang hampir sama antara $\mathrm{N} 40^{\circ}-45^{\circ} \mathrm{E}$, bukaan $15-30 \mathrm{~cm}$. Di samping itu, di Dusun Ngrancahan (ST 56) terdapat rentetan mata air baru yang kemungkinan pemunculannya mengikuti sesar baru akibat gempa.

Gejala lain yang terdapat di ST 57, Gunung Lemah yang terdiri atas lempung tufan dan tuf lapili, sudah mengalami rekahan-rekahan pada tebing atas, dan tebing sudah mengalami longsoran yang cukup serius. Selain itu, jalan yang melingkari bukit sudah mengalami retak dan belah dengan pergeseran mengiri berarah $\mathrm{N} 45^{\circ} \mathrm{E}$.

Longsoran \& jatuhan batu (Rock slide \& rock fall)

Longsoran dan jatuhan batu banyak ditemukan di sejumlah stasiun. Dari utara mulai Dusun Sengir (ST 10), Pandeyan (ST 18), Srumbung (ST 21), Blado (ST 22), Ngadem (ST 20), Parangrejo (ST 37), pantai Parangendog (ST 28, 29, 30), Salam (ST 58), Ngrancahan (ST 57), Soka (T 15), Jembatan Oyo (ST 62), Gemblungan (ST 45), Ngentakmejing (ST 49), Grembyangan (ST 48), dan lainnya. Longsoran pada umumnya terdapat di tebing Sungai Opak yang notabene terdiri atas pasir urai dan tuf. Kemiringan tebing pada umumnya hampir tegak dengan ketinggian berkisar $30-40 \mathrm{~m}$, lebar longsoran berkisar $35-50 \mathrm{~m}$. Longsoran-longsoran tebing sungai dapat ditemukản di ST $62,45,48$ dan 49, sedangkan di stasiun lain merupakan jatuhan batu.
Di Dusun Grembayangan (ST 48) terdapat longsoran yang cukup signifikan karena di lokasi ini terdapat bangunan bendung irigasi. Akibat gempa yang lalu talud di sisi timur dengan ketinggian sekitar 40 m runtuh dan hancur di dasar Sungai Opak. Sementara itu, di Dusun Sengir (ST 10), terjadi nendatan yang cukup luas, sehingga menghancurkan beberapa rumah penduduk. Dari hasil pengamatan lapangan, dapat disimpulkan bahwa lahan di sini merupakan lereng debris tua, sehingga kondisinya labil. Di samping itu, gejala. jatuhan batu terdapat di Pandeyan (ST 18), Blado (ST 20), Parangrejo (ST 37), Salam (ST 58), Pengkok (ST 57), dan Ngoro-oro (ST 15). Dari sekian lokasi kejadian, terdapat empat lokasi yang sangat membahayakan keselamatan penduduk yang bermukim di bawahnya, sedangkan di pantai Parangendog (ST 28, 29, 30) sangat membahayakan bangunan hotel di atasnya (Foto 7-9).

Geo-Dynamics

Foto 1. Rekahan tanah dengan arah $\mathrm{N} 10^{\circ}$ E lebar 40 cm di ST 24 pertemuan Sungai Petir dan Sungai Opak (Dusun Bintaran Kulon), Kecamalan Piyungan.

Foto 4. Tonggakkayu jati terbelah selebar 12 cm . Lokasi pinggir Sungai Gawe (Dusun Berjo) ST 27.

Foto 5. Rekahan lanah di daerah tinggian dengan arah $\mathrm{N} 40^{\circ} \mathrm{E}$ lebar 30 cm. Lokasi Dusun Patuk, Kecamatan Patuk (ST 13). Di lokasi ini tertapat tiga jalur rekahan berarah hampir sama.

Foto 6. Rekahan tanah berarah $\mathrm{N} 50^{\circ}$ E lebar $10-30 \mathrm{~cm}$ masuk ke rumah penduduk hingga hancur rata dengan tanah. Lokasi Dusun Ngoro-oro (ST 14).

Foto 7. Longsoran tebing yang tediri atas batuan gamping dengan ketinggian $\pm 30 \mathrm{~m}$. Lokasi pantai Parangendog, Parangtritis (ST 29).

Foto 8. Guguran bongkah batu andesit berdiameter $\pm 3 \mathrm{~m}$ menutup jalan. Lokasi Dusun Salam, Paluk (ST 58).

Foto 9. Longsoran lereng debris tua yang merusak empat rumah penduduk yang dibangun di atas lereng debris yang labil. Lokasi Dusun Sengir, Prambanan (ST 10).

Pelulukan

Gempa juga mengakibatkan terjadinya pelulukan di daerah Bantul, Sleman, dan Jogjakarta. Hal ini dimungkinkan karena tempat-tempat tersebut tersusun oleh pasir lepas yang berukuran sedang, seragam, dan muka air tanah dangkal, sehingga pada waktu terjadi goncangan gempa air tanah memancar ke atas membawa pasir melalui lubang sumur. Salah satu contoh kejadian pelulukan di Dusun Taji dan Kotesan (Prambanan) (Foto 10) mengakibatkan semua sumur gali di dua dusun ini mengalami kekeringan dan lubang sumur penuh terisi pasir. Hal itu terjadi pula di jalan aspal dan halaman sekolah SD Taji di lokasi yang sama, yakni pada waktu gempa terjadi air memancar di tengah jalan aspal (ST 41 dan 42).
Gejala lain yang terdapat di Dusun Jomblang, Bambanglipuro, Bantul, banyak sumur penduduk airnya menjadi berbau menyengat dan berwarna hitam. Contoh lain di Jogjakarta, di wilayah Tirtodipuran juga terdapat pelulukan yang menyebabkan sumur penduduk kering dan penuh terisi pasir dari dalam sumur.

BENTANG ALAM SESAR AKTIF

Berdasarkan identifikasi lapangan, banyak ditemukan gejala morfostruktur pascagempa yang berupa rekahan tanah, longsoran/jatuhan batu, retakan jalan, pelulukan, tonggak kayu dan rumpun bambu terbelah, serta kerusakan infrastruktur (pergeseran jembatan, pembengkokan rel KA).
Dari semua lokasi yang diidentifikasi terdapat bukti adanya perubahan, baik morfologi maupun infrastruktur, akibat gempa bumi yang lalu. Karena itu dari barat daya ke timur laut dapat ditarik dua jalur/garis imajiner yang relatif sejajar dan searah dengan arah Sesar Opak yang dinyatakan oleh BMG, EMSC (Eropa) dan USGS. Dua garis imajiner tersebut dapat ditarik dari ujung barat daya - timur laut berdasarkan hasil pengukuran di semua stasiun, baik yang berupa rekahan tanah maupun longsoran/jatuhan batu. Semua rekahan yang dapat diukur di lapangan membuktikan bahwa di kedua garis imajiner cenderung terdapat arah rekahan yang sama, yaitu berkisar antara $\mathrm{N} 40^{\circ}-45^{\circ} \mathrm{E}$ (Gambar 6).

Jalur Imajiner I (Sesar Opak)

Jalur ini dapat ditelusuri mulai dari jembatan Kretek (Opak) mengikuti Sungai Opak ke arah hulu hingga Prambanan (Dusun Taji dan Kotesan). Stasiunstasiun yang menunjukkan indikasi jalur sesar ini dapat ditelusuri dari barat daya ke timur laut mulai dari jembatan Opak di Kretek, Dusun Barongan, jembatan Opak Imogiri, jembatan Sungai Gajahwong, Dusun Sareyan, jembatan Opak jalan ke Pleret, Tronayan (Banguntapan), Dusun Karanggayam (Piyungan), Dusun Bintaran Kulon, Sungai Opak, muara Sungai Petir dengan Opak, jembatan Gemblungan Sungai Opak, Dusun Ngentakmejing (Sungai Opak), Dusun Grembayangan (Sungai Opak), Dusun Taji dan Kotesan (Prambanan), jembatan KA, dan Sungai Opak.

Jalur Imajiner II (Sesar "Patuk")

Jalur ini dapat diikuti mulai dari pantai Parangendog (Parangtritis) sampai ke Dusun Sengir, Prambanan, yang hampir semua terdapat di daerah tinggian dan kemungkinan hingga ke daerah Gantiwarno dan Wedi (Klaten). Stasiun-stasiun yang menunjukkan indikasi jalur sesar ini adalah sebagai berikut: pantai Parangendog, jalan di atas Parangtritis ke Panggang, Dusun Parangrejo, Purwosari , Dusun Jorong, Dusun Blado, Dusun Tunggalan, Jembatan Oyo, Dusun Pandeyan (Patuk), Dusun Salam (Patuk), Dusun Ngantunan, jalan tanjakan ke Patuk, Dusun Patuk, Kecamatan Patuk, Dusun Jetis, jembatan Sungai Gawe, Dusun Sengir (Prambanan), Dusun Berjo, Dusun Ngelo (Piyungan), Dusun Ngasem (Piyungan), Dusun Srumbung, dan kemungkinan jalur ini menerus hingga ke daerah Gantiwarno dan Wedi.

DISKUSI

Tiga lembaga yang membidangi seismologi (BMG, USGS, dan EMSC/Eropa) menyatakan bahwa gempa bumi Jogjakarta diakibatkan oleh gerakan strikeslip/pergeseran mendatar dari sesar yang membentang dengan arah barat daya - timur laut mulai dari kawasan utara Candi Prambanan hingga ke muara Sungai Opak. Hal ini mungkin juga yang bisa menjelaskan ambruknya stasiun KA Prambanan dan patah/bengkoknya rel KA di antara stasiun Srowot-Prambanan, suatu hal yang "luar biasa" bagi sebuah gempa dengan besaran $5,9-6,3$ skala Richter. Sementara Peta Geologi Lembar Jogjakarta yang ditulis oleh Rahardjo, Sukandarrumidi, dan

Foto 10. Pelulukan yang menyebabkan sumur penduduk dengan kedalaman 13 m kering dan penuh terisi pasir dari bawah. Lokasi: Dusun Kotesan, Prambanan (ST 42).

Rosidi (1995) memuat jalur Sesar Opak mengikuti arah Sungai Opak yang mengalami offset.

Menurut publikasi dalam internet banyak ahli yang juga menyatakan bahwa gempa bumi Jogjakrta 27 Mei 2006 lalu diakibatkan oleh aktifnya Sesar Opak, namun posisi sebenarnya Sesar Opak sendiri, masing-masing ahli berbeda pendapat. Menurut interpretasi citra oleh Setiawan (2006) daerah Bantul merupakan terban yang di sebelah timur dibatasi oleh Sesar Opak dan di sebelah barat dibatasi Sesar Progo dengan arah yang sama, yakni barat daya - timur laut. Sesar Opak menurut Setiawan (2006) membentang dari muara Opak melalui gawir sesar tua yang lurus hingga Gunung yo (Prambanan). Karnawati dan Fathoni (2006) dalam peta longsoran/jatuhan batu membuat jalur sesar sama dengan pendapat sebelumnya. Demikian halnya menurut peta yang dibuat Unosat bahwa Sesar Opak berada pada jalur yang sama.

Dalam artikel e-mail (Elcom.umy.ac.id, 2006), dikatakan bahwa pada tahun 1980-an Sesar Opak ini pernah diteliti dan dinyatakan sudah mati, namun patahan ini sekarang hidup lagi, dan di bawah lembah Sungai Opak gempa-gempa susulan terus bermunculan. Sekilas pergeseran patahan ini memang tidak besar. Bila gempa megathrust di NAD 26 Desember 2004 menimbulkan pergeseran (ratarata) 15 m dan maksimal 20 m , maka gempa di Jogjakarta hanya 5-10 cm. Namun bila membandingkan pergeseran ini dengan pergerakan patahan Lembanǵ, Cimandiri, Baribis, yang kecepatannya (rata-rata) hanya $0,2 \mathrm{~mm} /$ tahun, maka nampak pergeserannya cukup besar.

Dari hasil kajian lapangan dapat ditarik dua garis imajiner sehubungan dengan pendapat umum, sebenarnya dimana Sesar Opak itu berada. Jalur I bisa diikuti mulai dari muara Opak hingga Prambanan melalui aliran Sungai Opak. Di sepanjang jalur ini banyak indikasi adanya morfostruktur akibat gempa seperti pada bahasan bab sebelumnya. Jalur II merupakan jalur yang mengikuti jalur sesar tua yang membentang dari Parangtritis hingga Gunung ljo (Prambanan), namun indikasi di sepanjang jalur II ini didominasi oleh adanya longsoran dan jatuhan batu di sepanjang gawir yang berskala kecil hingga besar. Secara umum arah pergeserannya adalah gerakan mendatar mengiri (sinistral), namun ada rekahan-rekahan kecil yang kadang-kadang berkombinasi dengan gerakan menganan (dextral). Dari hasil pengukuran di lapangan seluruh rekahan yang ada menunjukkan bahwa besar pergeserannya bervariasi dari 1-15 cm , namun apabila dirata-ratakan besar pergeserannya $\pm 7,4 \mathrm{~cm}$. Angka ini sesuai dengan pernyataan di atas yang mempunyal besar pergeseran antara 5-10 cm.

KESIMPULAN

Berdasarkan interpretasi hasil pembahasan semua data yang diperoleh, maka ada dua kemungkinan yang bisa disimpulkan :

- Jalur Sesar Opak sementara diasumsikan bukan berupa garis, tetapi merupakan zona yang dibatasi oleh kedua jalur tersebut di atas, namun arahnya sama yang terbentang dari Muara Opak hingga Prambanan.
- Jalur Sesar Opak merupakan penyebab utama gempa bumi Jogjakarta 27 Mei 2006, kemudian memicu patahan lainnya (synthetic fault), sehingga teraktifkan kembali dengan adanya dua gempa susulan yang bersumber di daerah Klaten (USGS gov.). Apabila ditarik garis imajiner, daerah Gantiwarno dan Wedi (Klaten Selatan) akan bertemu dengan jalur Sesar "Patuk" yang arahnya berkisar $\mathrm{N} 40^{\circ}-45^{\circ} \mathrm{E}$.

UCAPAN TERIMA KASIH

Terima kasih penulis sampaikan kepada Kepala Pusat Survei Geologi yang memberikan kesempatan untuk melakukan kajian ini. Terima kasih juga disampaikan kepada seluruh rekan yang telah membantu dalam kegiatan ini.

ACUAN

Badan Informasi Daerah Istimewa Jogjakarta, 2005. Peta Kemiringan Lereng Daerah Istimewa Jogjakarta.
Elcom.umy.ac.id., 2006. Dan Patahan Itu Hidup Lagi? Http://elcom.umy.ac.id/index.php?option=com.
EMSC Europea-Mediterranean Seismological Centre. Strong Earthquake in Jogjakarta, Indonesia; Saturday, 27 May 2006; http://www.emsc-csem.org/
Karnawati D., Fathoni, T.F., 2006. Mechanism and Impact of Earthquake Induced Landslides in Jogjakarta Province, Indonesia; http://korita.files.wordpress.com/2006/08landslife-fault-at-ygy.jpg
NEIC, USGS. Magnitude 6,2-South of Java, Indonesia, 2006 May 26; http://neic.usgs.gov/neis/ bulletin/index.html/
Rahardjo, W., Sukandarrumidi, dan Rosidi D., 1995. Peta Geologi Lembar Jogjakarta Skala 1:100.000. Pusat Penelitian dan Pengembangan Geologi, Bandung.
Setiawan, A., 2006. Geologi Gempa Jogjakarta; http://beritakan .blogspot.com.
Soehaimi, A., Effendi, I., Sugilar, H., Sopyan, Y., dan Molyati, N., 2006. Penelitian Deformasi Neotektonik di Daerah Gempa Bumi Merusak Jogjakarta 27 Mei 2006. Laporan Intern. Pusat Survei Geologi, Bandung.

