# MEMANEN HUJAN (RAIN HARVESTING) 

U. Sudarsono<br>Pusat Lingkungan Geologi<br>JI. Diponegoro No. 57 Bandung


#### Abstract

SARI Memanen hujan adalah suatu metode konservasi air tanah yang dilakukan dengan cara mengumpulkan air hujan yang jatuh di atap bangunan dan menyimpannya di dalam akuifer. Untuk melaksanakan metode ini dibuat penelitian dengan mengambil lokasi di halaman Pusat Lingkungan Geologi Bandung. Di lokasi tersebut potensi air hujan yang dapat dipanen sebesar $8340.00 \mathrm{~m}^{3} /$ tahun, tetapi yang dapat dipanen dengan metode menuai hujan ini hanya $3614.00 \mathrm{~m}^{3} / t a h u n$, dan yang dimasukkan ke dalam akuifer baru $1260.00 \mathrm{~m}^{3} /$ tahun. Sumur percobaan yang dibuat di halaman kantor tersebut terletak pada akuifer dari Satuan Batuan Tuf Berbatu Apung berumur Kuarter (Qyt) dengan kedalaman 43.00 m berdiameter 15.00 cm menembus akuifer tidak tertekan berupa pasir sedang sampai kasar mengandung kerikil dari kedalaman 10.00 sampai 37.00 m dengan kelulusan $1,80 \times 10^{3} \mathrm{~cm} /$ detik dan permukaan air tanah terletak pada kedalaman $5,66 \mathrm{~m}$. Sumur tersebut mempunyai kemampuan imbuhan sebesar $1800,00 \mathrm{~m}^{3} / \mathrm{jam}$. Untuk mengoptimalkan pemanenan hujan diperlukan beberapa sumur imbuhan dan penyimpanan lagi dengan diameter bervariasi dari 20,00 sampai $60,00 \mathrm{~cm}$.


Kata kunci: Air tanah, memanen hujan, kelulusan , imbuhan, penyimpanan buatan

## ABSTRACT

Rainwater harvesting is one of groundwater conservation methods that collects rain water on the roof and stores it into aquifer. For the purpose of this investigation, a research has been conducted at the Centre of Environmental Geology, Bandung.
In this location, the water harvesting potential is $8340.00 \mathrm{~m}^{3} / y$ year, however, the rainwater that will be harvested, is $3614.00 \mathrm{~m}^{3} /$ year and $1260.00 \mathrm{~m}^{3} /$ year has been stored in the aquifer.
An experiment well with 15.00 cm in diameter and 43.00 metres deep was constructed on this site. In the study area, an aquifer system is Quaternary Pumiceous Tuff (Qyt). The aquifer is situatedat tre depth of 10.00 to 37.00 metres and it consists of medium to coarse grained gravely sands. The hydraulic conductivity of the aquifer is $1.80 \times 10^{3} \mathrm{~cm} / \mathrm{second}$, the water table is situated at 5.66 metres below the surface. The recharge rate of the well is $1800.00 \mathrm{~m}^{3} / \mathrm{hour}$ of water.
For optimizing, the harvesting of rainwater several wells with various diameters $(20.00$ to 60.00 cm$)$ should be constructed in the site.
Keywords: groundwater, rainwater harvesting, hydraulic conductivity, artificial recharge, storage

## PENDAHULUAN

Kebutuhan akan air dari tanah bagi berbagai keperluan seperti air minum, pengairan dan industri meningkat dengan signifikan seiring dengan peningkatan pembangunan di berbagai sektor dan di beberapa daerah, seperti Jakarta, Bandung, dan Semarang. Di daerah-daerah tersebut telah terjadi pengambilan air tanah yang berlebihan, sehingga menyebabkan penurunan permukaan air tanah yang sangat dalam, seperti Jakarta 3,50-52,00 m di bawah permukaan tanah (dpt), Bandung 17,50 $68,00 \mathrm{~m}$ dpt, dan Semarang 15,00-23,00 m dpt. (terjadinya amblesan; dan intrusi air laut di pantai).

Hal tersebut menarik untuk diteliti dan direkayasa guna penyelamatan air tanah. Penyelamatan air tanah dapat dilakukan dengan berbagai cara, salah satunya adalah dengan imbuhan dan penyimpanan buatan air tanah (groundwater artificial recharge and storage).

Prinsip dasar imbuhan dan penyimpanan buatan air tanah ini adalah memasukkan bagian air hujan yang tidak terserap berupa air permukaan ke dalam akuifer (melalui berbagai cara, dan dikenal beberapa metode imbuhan dan penyimpanan buatan untuk air tanah). Tuinhof et al. (2003) mengklasifikasi metode tersebut yaitu: injeksi gravitasi sederhana tingkat
pedesaan (village level gravity injection), bangunan di badan sungai (in-channel structures), bangunan infiltrasi di luar badan sungai (off-channel infiltration ponds), injeksi bertekanan (pressure injection), dan infiltrasi melalui tanggul (induced bank infiltration).

Metode lainnya yaitu metode injeksi gravitasi berupa tipe memanen hujan atau rain harvesting diperkenalkan oleh Dillon (2005). Metode tersebut merupakan pendekatan yang dipilih dalam penelitian ini karena sederhana dan sesuai untuk tingkat pedesaan. Metode ini dilaksanakan dengan cara mengumpulkan air hujan yang jatuh di atap dan menyimpannya di tempat penyimpanan untuk dipergunakan kemudian atay memasukannya ke dalam akuifer.

Di Indonesia imbuhan dar penyimpanan buatan air tanah dipopulerkan sebagai sumur resapan dan distandarkan dalam SNI S-14-1990-F (Anonim a, 1990) tentang Spesifikasi Sumur Resapan Air Hujan Untuk Lahan Pekarangan.

## METODOLOGI PENELITIAN

Penelitian dilakukan dengan mempetajari kondisi hidrogeologi di tempat akan dibangunnya imbuhan air tanah untuk mengetahui apakah lokasi tersebut terletak di daerah imbuhan atau lepasan air tana $\mathbf{h}_{\mathbf{a}}$ dan sistem akuifer yang akan diisi. Informasi ini dipergunakan untuk memilih metode imbuhan dan penyimpanan buatan untuk air tanah.

Informasi selanjutnya yang diperlukan adalah potensi hujan yang dapat dipanen di tapak studi. Untuk itu diperlukan data tentang curah hujan dan koefisien aliran permukaan di tapak tersebut. Kondisi curah hujan di daerah tersebut didapat dari penelitian-penelitian yang dilakukan di daerah cekungan Bandung dan koefisien aliran permukaan diperoleh dari penelitian-penelitian tentang koefisien aliran permukaan.

Langkah selanjutnya adalah mempelajari kondisi akuifer di tapak penelitian yang dari pemboran. Dari data pemboran didapat posisi akuifer, jenis akuifer, dan ketebalan akuifer.

Parameter hidrogeologi terutama keterusan (K) didapat dari uji pemompaan yang dilakukan. Dari nilai K , diameter sumur, dan jarak dari permukaan sumur ke permukaan air tanah dapat dihitung kemampuan sumur imbuhan.

Dengan menggunakan parameter-parameter yang didapat, dilakukan rekayasa teknik untuk mengoptimalkan pemasukan air hujan ke dalam akuifer.

## LOKASI DAN KONDISI HIDROGEOLOGI TAPAK PENELITIAN

Lokasi penelitian, percobaan imbuhan, dan penyimpanan air tanah secara buatan terletak di halaman Pusat Lingkungan Geologi (PLG), Jalan Diponegoro 57 Bandung (Gambar 1) dengan luas $11.536,50 \mathrm{~m}^{2}$ dengan ketinggian 740 m di atas permukaan laut dengan koordinat UTM zona 48 (789525, 9236396). Pada lokasi tersebut terdapat empat gedung, taman, fasilitas parkir, dan jalan dengan perincian luas seperti dalam Tabel 1.

Daerah tersebut mempunyai curah hujan sebesar 1200 sampai $1300 \mathrm{~mm} /$ tahun (Narulita and Djuwansah, 2006) dan evapotranspirasi sebesar $6,28 \mathrm{~mm} /$ hari (Ibrahim, 2001).

Secara hidrogeologis tapak tersebut merupakan daerah imbuhan sistem akuifer sedang dari Satuan Batuan Tuf Berbatu Apung berumur Kuarter (Qyt) yang tersusun atas pasir tufaan, lapili, bom-bom lava berongea dan kepingan-kepingan andesit-basal dat bersudut dengan banyak bongkahan dan pecahan batu apung (Silitonga, 2003) dengan kelulusan berkisar antara $1 \times 10^{4}$ sampai dengan $1 \times 10^{-3} \mathrm{~cm} /$ detik (Sudarsono, 2005), dan merupakan akuifer yang banyak disadap untuk berbagai keperluan (Gambar 2)

## PEMBANGUNAN SUMUR IMBUHAN

Pembangunan sumur imbuhan di lakukan dengan cara pemboran dengan diameter $30,00 \mathrm{~cm}$ sampai kedalaman $43,00 \mathrm{~m}$ di bawah permukaan tanah setempat. Lapisan batuan yang ditembus oleh pemboran adalah sebagai berikut: bagian atas setebal $2,00 \mathrm{~m}$ adalah tanah penutup lempung kuning kecoklatan, dari $2,00 \mathrm{~m}$ sampai $10,00 \mathrm{~m}$ terdiri atas pasir berukuran butir sedang, dari 10,00 sampai $37,00 \mathrm{~m}$ adalah batu pasir sedang sampai kasar dengan sisipan kerikil yang merupakan akuifer tidak tertekan, dan dari $37,00-43,00 \mathrm{~m}$ adalah lempung yang merupakan akuitar (Gambar 3). Lapisan-lapisan batuan tersebut merupakan Satuan Batuan Tufa berumur Kuarter (Qyt).

Lubang bor tersebut kemudian dikonstruksi menjadi sumur bor dengan memasang pipa polyvinyl chloride (PVC) diameter $15,00 \mathrm{~cm}$ sampai kedalaman 40,00 m. Dari kedalaman 40,00 m sampai $43,00 \mathrm{~m}$ diurug dengan kerikil dan antara isian kerikil dari kedalaman $10,00 \mathrm{~m}$ sampai dengan $40,00 \mathrm{~m}$. Dari permukaan tanah sampai kedalaman $10,00 \mathrm{~m}$ diberi pasangan beton untuk mendudukan sumur dan mencegah kontaminasi dari air permukaan. Saringan diletakkan
dari kedalaman 22,00 sampai kedalaman 37,00 m dan dari 37,00 sampai $40,00 \mathrm{~m}$ berupa pipa buta. Permukaan air tanah terletak pada kedalaman 5,66 m dari permukaan tanah setempat.

Setelah konstruksi sumur selesai dikerjakan, dilakukan uji pemompaan untuk mengetahui parameter-parameter hidrogeologi dari akuifer terutama kelulusan ( K ) dan uji imbuhan untuk mengetahui kemampuan serapan sumur.


Gambar 1. Lokasi penelitian di Komplek Pusat Lingkungan Geologi (PLG), Jl. Eiponegoro 57 Bandung.

Tabel 1. Pemantaatan lahan di Komplek Pusat Lingkungan Geologi

| Uraian | Luas Tanah <br> $\left(\mathrm{m}^{2}\right)$ | Taman dan <br> Halaman <br> $\left(\mathrm{m}^{2}\right)$ | Sarana Parkir <br> $\left(\mathrm{m}^{2}\right)$ | Jalan (m$)$ | Luas lantai <br> dasar gedung <br> $\left(\mathrm{m}^{2}\right)$ | Luas Atap <br> $\left(\mathrm{m}^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gedung 1 | - | - | - | - | - | $\mathbf{1 1 4 0 , 0 0}$ |
| Gedung 2 | - | - | - | - | - | 840,00 |
| Gedung 3 | - | - | - | - | - | - |
| Gedung 4 | - | - | - | - | - | 450,00 |
| Kompleks | $\mathbf{- 1 5 3 6 , 5 0}$ | 3839,50 | $\mathbf{1 7 0 6 , 0 0}$ | 2209,00 | $\mathbf{3 7 8 2 , 0 0}$ | $\mathbf{3 2 7 1 , 0 0}$ |


Gambar 2. Hidrogeologi sekitar lokasi penelitian.


Gambar 3. Penampang sumur imbuhan di Kompleks Pusat Lingkungan Geologi (PLG), Jalan Diponegoro 57 Bandung.

## Geo-Resources

## POTENSI HUJAN

Jumlah air yang diterima dari air hujan di suatu lokasi dihitung dengan menggunakan persamaan berikut:

Luas tangkapan $\times$ Jumlah hujan $=$ Volume air yang diterima

Jumlah atau volume air yang diterima merupakan jumlah air hujan yang diterima di suatu area. Akan tetapi tidak semua air tersebut dapat dipanen karena beberapa faktor curah hujan dan karakteristik tangkapan.

Curah hujan bergantung pada kuantitas dan pola hujan. Kuantitas curah hujan merupakan parameter yang paling sukar untuk diprediksi, sehingga untuk mengetahui pasokan air bujan untuk suatu tangkapan tertentu, data curah hujan yang cukup akurat sangat diperlakan. Adapun pola hujan ditunjukkan oleh jumlah hari hujan yang akan mempengaruli desain untuk memanen hujan. Untuk daerah kering dibutuhkan tempat penampungan yang banyak, tetapi apabila perigde musim kering terlalu lama, maka diperlukan tandon yang besar untuk menampung air hujan. Untuk daerah-daerah tertentu, lebih dimungkinkan untuk menggunakan air hujan sebagai pemasok air tanah daripada menyimpan dalam suatu tandon.

Karakteristik area tangkapan merupakan parameter yang berkaitan dengan aliran permukaan. Semua perhitungan yang berkaitan dengan sistem tangkapan air hujan menggunakan koefisien aliran permukaan (coefficient of runoff) untuk memperhitungkan hilangnya air akibat rembesan,
kebocoran, infiltrasi, dan pembasahan daerah tangkapan, yang akan mengurangi jumlah aliran permukaan. Koefisien aliran permukaan untuk setiap tangkapan merupakan perbandingann antara volume air yang mengalir di permukaan terhadap volume air hujan yang jatuh di permukaan tersebut, dan untuk beberapa koefisien aliran permukaan disajikan dalam Tabel 2.

Sumber: Design and Construction of Sanitary and Storm Sewers, American Society of Civil Engineers, New York, 1969 (dalam Brikowski, 2005).

Potensi hujan yang dapat dipanen dihitung dari:
Potensi hujan yang dipanen $=$ Curah hujan $\times$ Luas tangkapan $\times$ Koefisien aliran

## PARAMETER HIDROGEOLOGI

Parameter hidrogeologi berupa akuifer dan akuitar serta parameter-parameter yang lain diperoleh dari hasil pemboran dan hasil uji pemompaan.

Dari hasil pemboran diketahui bahwa akuifer di tapak ini merupakan akuifer tidak tertekan dari Satuan Batuan Tufa Pasir berumur Kuarter (Qyt) setebal $27,00 \mathrm{~m}$ dari kedalaman 10,00 sampai dengan $37,00 \mathrm{~m}$ dan dengan permukaan air tanah terletak pada kedalaman $5,66 \mathrm{~m}$ dari permukaan tanah setempat.

Untuk mengetahui nilai kelulusan ( K ) dilakukan pompa uji dan hasilnya dianalisis dengan metode Theis, Copper, dan Jacob, serta metode Kambuh dari Theis (dalany Kruseman dan De Ridder, 1970).

Tabel 2. Koefisien aliran permukaan

| No | Permukaan | KoefiAliran Permukaan | Rekomendasi |
| :---: | :---: | :---: | :---: |
| 1 | Trotoir/Jalan |  |  |
|  | Aspal dan beton | 0,70-0,95 | 0,85 |
|  | Bata | 0,75-0,85 | 0,80 |
| 2 | Atap | 0,75-0,95 | 0,85 |
| 3 | Halaman, tanah berpasir |  |  |
|  | Datar, 2\% | 0,05-0,10 | 0,08 |
|  | Menengah 2 - 7\% | 0,10-0,15 | 0,13 |
|  | Terjal, 7\% | 0,15-0,20 | 0,18 |
| 4 | Halaman, tanah berat (tanah lempungan) | 0,13-17 |  |
|  | Datar, 2\% | 0,13-0,17 | 0,15 |
|  | Menengah, 2-7\% | 0,18-0,22 | 0,20 |
|  | Terjal, 7\% | 0,25-0,35 | 0,30 |

## Metode Theis

Analisis hasil pompa uji biasanya dilakukan dengan menggunakan persamaan yang dikembangkan oleh Theis 1935 sebagai berikut:

$$
\begin{equation*}
s=\frac{Q}{4 \pi T} \int_{u}^{\infty} \frac{e^{-x}}{x} d x \tag{3}
\end{equation*}
$$

s adalah penurunan permukaan air tanah dalam meter, $Q$ adalah debit pemompaan sumur dalam meter/menit, T adalah keterusan dalam $\mathrm{m}^{2} /$ menit, r adalah jarak ke sumur pengamat dalam meter, S adalah koefisien penyimpanan, tidak bersatuan, dan $t$ adalah waktu pemompaan dalam menit.

$$
\begin{align*}
& u=\frac{r^{2} S}{4 T t}  \tag{4}\\
& s=\frac{Q}{4 \pi T}\left(-0.577216 . \ln u+u-\frac{u^{2}}{2.2!}+\frac{u^{3}}{3.3!}-\ldots . . . . .\right) \tag{5}
\end{align*}
$$

Dalam persamaan (3) bagian di dalam tanda kurung disebut fungsi sumur (well furction) W, Dari persamaan (2) dan persamaan (3) dapat difitung:

$$
\begin{equation*}
s=\frac{Q W_{u}}{4 \pi T} \tag{6}
\end{equation*}
$$

atau

$$
T=\frac{Q W_{u}}{4 \pi s}
$$

Dari persamaan (2) $u=\frac{r^{2} S}{4 \pi t}$ didapat

$$
\begin{equation*}
S=\frac{4 T u}{r^{2} / t} \tag{8}
\end{equation*}
$$

## Metode Copper dan Jacob

Metode yang dikembangkan oleh Copper dan Jacob tahun 1947 merupakan penyederhanaan dari metode Theis, yaitu untuk harga " u " yang kecil maka persamaan (5) dapat disederhanakan menjadi

$$
\begin{equation*}
s=\frac{Q}{4 \pi T}(-0.577216-\ln u) \tag{9}
\end{equation*}
$$

atau
$s=\frac{Q}{4 \pi T}\left(-0.577216-\ln \frac{r^{2} S}{4 T t}\right)$
sehingga
$s=\frac{Q}{4 \pi T}\left(\ln \frac{2.25 T t}{r^{2} S}\right)$
atau
$s=\frac{2.3 Q}{4 \pi T}\left(\log \frac{2.25 T t}{r^{2} S}\right)$
Apabila diplot antara s (penurunan permukaan air tanah) dengan $t$ (waktu) dalam semilog didapat garis lurus dan apabila garis tersebut diteruskan hingga memotong sumbu $\mathrm{s}=0$, maka perpotongan tersebut mempunyai koordinat $\mathrm{s}=0$ dan $\mathrm{t}=\mathrm{t}_{0}$. Dengan memasukkan harga-harga tersebut dalam persamaan (10) didapat
$0=\frac{2.3 Q}{4 \pi T} \log \frac{2.25 T t_{0}}{r^{2} S}$

Karena $\frac{2.3 Q}{4 \pi T} \neq 0$ maka $\frac{2.25 T t}{r^{2} S}=1$
atau


Apabila $r / t_{0}=10$ dan $\log r / t_{0}=1$ makas dapat diganti dengan $\Delta$, yang yesarnya sama dengan penurunan permukaan air tanah per satu siklus logaritma, sehingga

$$
\begin{equation*}
T=\frac{2.3 Q}{4 \pi \Delta_{s}} \tag{15}
\end{equation*}
$$



## Metode Kambuh (Theis recovery method)

Apabila pemompaan dihentikan maka permukaan air tanah berangsur-angsur akan kembali ke kedudukan semula, dan untuk menghitung keterusan T dipergunakan rumus dari metode Kambuh Theis (Theis's recovery method), sebagai berikut:

$$
\begin{equation*}
s^{\prime \prime}=\frac{Q}{4 \pi T}\left(\ln \frac{4 T t}{r^{2} S}-\ln \frac{4 T t^{\prime \prime}}{r^{2} S^{\prime \prime}}\right) \tag{16}
\end{equation*}
$$

$s^{\prime \prime}$ adalah penurunan permukaan air tanah residu (residual drawdown), dalam meter, r adalah jarak
sumur pompa ke sumur pengamat, $\mathrm{S}^{\prime \prime}$ adalah koefisien penyimpanan selama kambuh bersatuan, S adalah koefisien penyimpanan selama pemompaan, $t$ adalah waktu selama pemompaan, $t^{\prime \prime}$ adalah waktu selama kambuh, $\mathrm{Q}=$ debit pemompaan. Apabila S dan $\mathrm{S}^{\prime \prime}$ konstan dan $u \quad r^{2} S / 4 \pi r^{\prime \prime} \quad$ cukup kecil maka persamaan (16) dapat ditulis:

$$
\begin{equation*}
s^{\prime \prime} \frac{2.3 Q}{4 T} \log \frac{t}{t^{\prime \prime}} \tag{17}
\end{equation*}
$$

Pada plot antara s" dengan $t / i$ pada grafik semilog ( $t / t^{\prime}$ pada sekala logaritma) didapat garis lurus dengan kemiringan sebesar $2.3 Q / 4 T$ yang merupakan harga dari, yang merupakan penurunan permukaan air tanah residu per satu siklus logaritma, sehingga:

$$
T \cdot \frac{2.3 Q}{4}
$$

Apabila b adalah tebal akuifer diketahui, maka kelulusan K dapat dihitung, karenas

## $T \quad K b$

## UJI IMBUHAN

Selain uji pemompaan dilakukan pula uji imbuhan untuk mengetahui kecepatan imbuhan pada sumur percobaan yang dilakukan dengan cara memasukkan sejumlah air tertentu ke dalam sumur.

## KEMAMPUAN SUMUR

Kemampuan sumur dihitung dengan menggunakan rumus Zangar (dalam Bouwer, 2002) sebagai berikut:

$$
\begin{equation*}
Q_{r} \frac{2 K L_{w}^{2}}{\ln 2 L_{w} / r_{w}} 1 \tag{20}
\end{equation*}
$$

Q adalah besarnya imbuhan, K adalah kelulusan tanah atau akuifer, $\mathrm{L}_{\mathrm{v}}$ adalah kedalaman air di sumur, dan $r_{w}$ adalah jari-jari sumur.

## DISKUSI

Dalam diskusi ini akan dibahas analisis kondisi hidrogeologi dari tatanan hidrogeologi, potensi hujan, dan kemampuan sumur percobaan.

Tataan hidrogeologi menunjukkan bahwa tapak penelitian merupakan daerah resapan air tanah dengan akuifer yang baik dari Satuan Batuan Tufa Pasir berumur Kuarter (Qyt) yang merupakan akuifer cukup baik. Adapun hasil pemboran menunjukkan bahwa bahwa akuifer tersusun oleh pasir berukuran butir sedang sampai kasar setebal $27,00 \mathrm{~m}$, dengan sedikit kerikil terletak di atas lempung dengan permukaan air tanah terletak pada kedalaman 5,66 m di bawah permukaan tanah setempat.

Curah hujan tahunan di lokasi tapak menurut Narulita dan Djuwansah (2006) adalah sebesar 1200 sampai $1300 \mathrm{~mm} /$ tahun. Untuk perhitungan dalam studi ini dipergunakan angka curah hujan sebesar $1300 \mathrm{~mm} /$ tahun atau $1,30 \mathrm{~m} /$ tahun dengan lahan berupa taman, tempat parkir dan jalan aspal, serta empat gedung perkantoran, maka hujan yang diterima oleh kompleks PLG sebesar 14333 $\mathrm{m} 3 /$ tahun, sehingga potensi hujan yang dapat dipanen sebesar $8340 \mathrm{~m}^{3} /$ tahun (Tabel 3).

Dengan teknik menuai hujan, maka potensi air hujan yang dimasukkan ke dalam akuifer berasal dari atap gedung, yaitu atap gedung $1,2,3$, dan 4 , sehingga yang potensinya sebesar $3614 \mathrm{~m}^{3} /$ tahun. Dalam percobaan ini yang dimasukkan ke dalam sumur imbuhan baru air hujan dari atap gedung 1 yang potensinya sebesar $1260 \mathrm{~m}^{3} /$ tahun.
Untuk menghitung kemampuan sumur untuk menampung air hujan yang dimasukkan ke dalam akuifer perlu díketahui nilai kelulusan (K) dari akuifer di dalam sumur tersebut. Akuifer di sumur imbuhan ini terdiri atas tufa pasir sedang sampai kasar dengan kerikil setebal $27,00 \mathrm{mi}$. Nilai kelulusan K ter-sebut diperoleh dari uji pemompaan yang dilakukan di sumur imbuhan.
Pemompaan uji dilaksanakan dengan cara pemompaan dengan debit tetap sebesar 1,05 liter/detik selama 180 menit dan kambuh selama 150 menit. Dari hasil uji pemompaan diperoleh hasil sebagai berikut:
Metode Theis memberikan hasil keterusan $T$ sebesar $3,08 \times 10^{-2} \mathrm{~m}^{2} /$ menit dan kelulusan K sebesar $1,89 \times 10^{-3} \mathrm{~cm} /$ detik (Gambar 4).

Metode Copper dan Jacob memberikan hasil keterusan $T$ sebesar $4,36 \times 10^{-2} \mathrm{~m}^{2} /$ menit dan kelulusan K sebesar 2,68×10 ${ }^{-3} \mathrm{~cm} /$ detik (Gambar 5).

Metode Kambuh Theis memberikan hasil keterusan T sebesar $2.70 \times 10-2 \mathrm{~m}^{2} /$ menit dan kelulusan K sebesar $1,00 \times 10^{-3} \mathrm{~cm} /$ detik (Gambar 6).

Tabel 3. Potensi hujan untuk dipanen di komplekPLG

| Thap lahan | $\begin{aligned} & \text { Luas } \\ & \left(m^{\prime}\right) \end{aligned}$ | Curah hajan (mtahun) | Koptasien alimn permukasn | Hujan yang dterima (m)'tahun) | Potensi hulan yang clapat di panen (mitahur) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Taman dan halaman | 3840 | 1.30 | 0.08 | 4991 | 399 |
| Parkir | 1706 | 1.30 | 0.85 | 2218 | 1885 |
| Salan | 2209 | 1.30 | 0.85 | 2872 | 2441 |
| Atap gedung 1 | 1140 | 1.30 | 0.85 | 1482 | 1260 |
| Atap gedung 2 | 840 | 1.30 | 0.85 | 1092 | 928 |
| Atap gedung 3 | 450 | 1.30 | 0.85 | 585 | 497 |
| Atap gedung 4 | 841 | 1.30 | 0.85 | 1093 | 929 |
| Jumlah | 11026 |  |  | 14333 | 8340 |

Dari ketiga metode tersebut disimpulkan bahwa akuifer di tapak percobaan mempunyai kelulusan (Transmissivity) (K) sebesar $1,80 \times 10^{-3} \mathrm{~cm} /$ detik.

Uji imbuhan dilakukan dengan membanjiri lubang bor. Pada awalnya penurunan permukaan air di dalam sumur berjalan dengan cepat, lama kelamaan berjalan lambat dan dalam waktu 25 menit permukaan air dalam sumur tidak menunjukkan penurunan tapi tetap pada kedudukan $5,19 \mathrm{~m}$ di bawah bibir sumur (Gambar 7). Hal tersebut menunjukkan bahwa air dapat memasuki akuifer dengan cukup lancar.

Kemampuan sumur diperhitungkan dengan persamaan (20) dengan parameter sebagai berikut: kelulusan $\mathrm{K}=1,80 \times 10^{-3} \mathrm{~cm} /$ detik, kedalaman air di dalam sumur diperhitungkan dari bibir sumur sampai ke permukaan air tanah $\mathrm{L}_{\mathrm{w}}=565 \mathrm{~cm}$ dan jari-jari sumur $\mathrm{r}_{\mathrm{z}}=7,50 \mathrm{~cm}$. Didapat imbuhan ke dalam sumur $Q=1800 \mathrm{~m}^{3} / \mathrm{jam}$.


Gambar 7. B Uji imbuhan pada sumur imbuhan PLG.

## PENGEMBANGAN SUMUR IMBUHAN

Untuk mengoptimalkan pemasukan air hujan dari atap gedung komplek Pusat Lingkungan Geologi, perlu dibangun beberapa sumur imbuhan lagi dengan kemampuan imbuhan yang dapat dipilih dari grafik di Gambar 8 dengan posisi seperti pada Gambar 9. Dengan memasukkan air hujan dari seluruh hujan yang ditampung di atap gedung, dapat dimasukkan air setahunnya sebesar $3.614 \mathrm{~m}^{3} /$ tahun yang setara dengan kebutuhan air minum bagi 1000 orang/tahun.

Sumur-sumur dibuat berupa sumur bor atau sumur pantek dengan diameter 10 cm dengan bahan PVC, dan sumur gali. Sumur-sumur tersebut harus dibuat mencapai akuifer dengan tata letak seperti dalam Gambar 9.

## KESIMPULAN DAN SARAN

Tapak penelitian terletak di daerah resapan Satuan Batuan Tufa Berbatu Apung (Qyt) dengan akuifer terletak pada kedalaman 10,00 sampai $37,00 \mathrm{~m} \mathrm{di}$ bawah permukaan tanah setempat, dan terdiri atas batu pasir sedang - kasar dengan sisipan kerakal dengan kelulusan K sebesar $1,80 \times 10^{-3} \mathrm{~cm} /$ detik. Di bawahnya terdapat batu lempung yang merupakan akuitar.

Curah hujan berkisar antara $1.200 \mathrm{~mm} / \mathrm{tahun}$ sampai $1.300 \mathrm{~mm} /$ tahun, dan dengan menggunakan curah hujan sebesar $1.300 \mathrm{~mm} /$ tahun didapat potensi air hujan yang dapat dipanen di- kompleks Pusat Lingkungan Geologi sebesar $8.340 \mathrm{~m}^{3} /$ tahur.
Potensi air hujan yang dipanen dari atap gedung 1 sebesar $1.260 \mathrm{~m}^{3} /$ tahun yang dimasukkan ke dalam akuifer di sumur imbuhan yang tersedia:
Kemampuan sumur imbuhan berdiameter 15 cm yang tersedia adalah sebesar $\mathrm{Qr}=1.800 \mathrm{~m}^{3} / \mathrm{jam}$.
Disarankan membuat beberapa sumur imbuhan lagi untuk memanen air hujan dari atap-atap gedung lainnya, sehingga dapat dikonservasi air sebesar $3600 \mathrm{~m}^{3} /$ tahun.

## UCAPAN TERIMA KASIH

Terima kasih disampaikan kepada kelompok Hidrogeologi yang telah mendukung penelitian ini dan Ir. Satrio Hadipurwo dari Direktorat Jenderal Mineral Batubara dan Panas Bumi yang yang telah memberi masukan dalam penyusunan makalah ini. Terima kasih disampaikan pula kepada Kepala Pusat Lingkungan Geologi Bapak Dr. Ir. Ade Djumarna Wirakusumah yang telah memberi ijin untuk menerbitkan makalah ini, serta kepada Kepala Pusat Survei Geologi yang telah berkenan mempublikasikan makalah inim


Gambar 8. Hubungan besarnya imbuhan dengan diameter sumur.


Gambar 9. Usulan lokasi sumur imbuhan dan penyimpanan air tanah di kompleks PLG Bandung.

## ACUAN

Anonim a, 1990. Spesifikasi sumur resapan untuk lahan pekarangan. Standar SK SNI S-14-1990F, Yayasan LPMB, Bandung.
Anonim b, 2006. Urban rainwater harvesting, http://www.rainwaterharvesting.org/Urban/Urban.htm
Bouwer, H. Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeology Journal (2005), 10: 121-142

Brikowski, 2005. Rational method (Peak discharge), GEOS 5313 Lecture notes, Spring 2005. The University of Texas at Dallas - UTD, http://www.utdallas.edu/~brikowi/Teaching/Applied_Modeling/ SurfaceWater/LectureNotes/Rational_Method/rational_method.html
Dillon, P., 2005. Future management of aquifer recharge. Hydrogeology Journal, 13: 313-316.
Ibrahim, 2001. Penentuan evapotranspirasi potensial dan neraca air pada sawah (oriza sativa) dengan sistem informasi geografik, Teknik Geodesi. Institute Teknologi Bandung (Thesis master).
Kruseman, G.P., and De Ridder, N.A., 1970. Analysis and evaluation of pumping test data. Bulletin 11 p. International Institute for Land Reclamation and Improvement, The Netherlands.
Narulita, I and Djuwansah, M.R., 2006. Some rainfall characteristics in Bandung Basin. Proc. Int. Symp. On Geotechinical Hazards: Prevention, Mitigation, and Engineering Responses : 105-118
Silitonga, P.H., 2003. Peta geologi lembar Bandung, Jawa, skala 1:100000, cetakan ke 2. Pusat penelitian dan Pengembangan Geologi, Bandung

Sudarsono, U. 2005. Konduktivitas hidrolik sebagal basis peta hidrogeologi. Proc. Joint Convention, Surabaya 2005, HAGI-IAGI-PERHAPI: 751 , 758.

Tuinhof, A., Olsthorn, T., Heederik, J.P., and deVries, J., 2002. Management of aquifer recharge and subsurface storage. A promising option to cope with increasing storage needs, in Management of aquifer recharge and sub surface storage, (ed. A. Tuinhof and J.P. Hendrik) NNC-IAH publication 4:3-18

```
Naskah diterima : 25 Januari 2007
Revisiterakhir : 23 November 2007
```



