KERENTANAN EROSI DI DAERAH MANADO DAN SEKITARNYA, SULAWESI UTARA

S. Hidayat dan Suharsono
Pusat Survei Geologi
JI. Diponegoro No. 57 Bandung

Abstract

\section*{SARI}

Siklus evolusi bentuk lahan di daerah Manado dan sekitarnya terjadi karena : pelapukan, erosi, transportasi, sedimentasi, dan faktor manusia. Semua proses ini terjadi sejak daratan muncul dan kejadiannya dipercepat oleh kegiatan manusia. Berdasarkan kecuraman, jenis tanah/batuan, vegetasi/penutup lahan, dan bentuk erosi, kerentanan erosi di daerah penelitian dapat dikelompokkan menjadi : erosi sangat tinggi, erosi tinggi, erosi sedang, erosi lemah, dan tidak ada erosi. Erosi sangat tinggi terjadi pada bentuk lahan kerucut gunung api a dan b, lereng gunung api a dan b, lereng pegunungan vulkanik tertoreh dan pegunungan vulkanik memanjang tertoreh. Erosi tinggi terjadi pada bentuk lahan padang solfatara, fumarola, lereng kaki gunungapi b , lereng pegunungan vulkanik memanjang tertoreh, lereng gunungapi c , bukit sisa dan aliran lava. Erosi sedang terjadi pada bentuk lahan lereng kaki gunung api a dan kipas alluvial. Erosi lemah terjadi pada bentuk lahan lereng kaki gunungapi c, dataran antar gunung, dan dataran banjii. Tidak ada erosi terjadi pada bentuk aluvium. Kata-kata kunci : kerentanan erosi. Manado, pelapukan, transportasi, sedimentasi

ABSTRACT

Evolution cycle of landform in Manado and surrounding area is caused by weathering, erosion, transportation, sedimentation, and human factors. These processes have occurred since the land existence, and they were strongly accelerated by human activities.
Based on slope level, soillrock type, vegetation/land covers, and erosion type, the erosion susceptibility in the studied area can be grouped into: high, medium, low, and no erosion.

Very high erosion occurs on landform of volcanic cone a and b, volcanic slope a and b, mountain dissected volcanic slope and dissected straight volcanic mountain. High erosion occurs on landform of solfatara field, fumarola, volcanic foot slope b, volcanic mountain slope elongated dissected, volcanic slope c, residual hill and lava flow. Medium erosion occurs on landform of volcanic foot slope a and alluvium fan. Low erosion occurs on landform of volcanic foot slope c, intermountain plane and flood plain. No erosion occurs on landform of alluvial.

Keyword: erosion succeptibility,Manado, weathering, transportation, sedimentation

PENDAHULUAN

Daerah Manado merupakan salah satu kawasan yang berkembang pesat dan mempunyai pelabuhan transit antar pulau di sekitarnya yang telah berkembang dengan adanya reklamasi pantai di Teluk Manado. Di daerah Kabupaten Minahasa terdapat Danau Tondano sebagai daerah tujuan wisata. Di samping itu, air Danau Tondano yang dialirkan melalui Sungai Tondano telah dimanfaatkan untuk Pembangkit Listrik Tenaga Atom (PLTA) di daerah Tenggari.
Daerah ini banyak didatangi kaum pendatang, baik dari Jawa maupun daerah sekitarnya. Peningkatan jumlah penduduk ini mengakibatkan meningkatnya
kebutuhan akan lahan, seperti untuk pertanian, perumahan, perkebunan, pertambangan, dan untuk keperluan lain. Pembukaan lahan-lahan baru mengakibatkan perubahan bentuk lahan, seperti daerah yang semula berhutan lebat berubah menjadi gundul, pascaoperasi HPH sejak puluhan tahun silam di daerah ini.

Selain itu, daerah-daerah yang semula bentuk lahannya berupa rawa berubah menjadi daratan karena ditimbun dan dijadikan pusat pengembangan kota, seperti daerah Teluk Manado. Untuk penimbunan ini. mereka mengupas bukit-bukit di sekitarnya. Pengupasan bukit-bukit tersebut menyebabkan daerah ini menjadi sangat rentan
terhadap bencana erosi. Contoh di atas membuktikan bahwa erosi yang terjadi di daerah penelitian tidak hanya disebabkan oleh faktor siklus alam, tetapi dipengaruhi juga oleh kegiatan manusia.
Potensi bencana erosi terjadi sebagai akibat hilangnya/berkurangnya penutup lahan, terutama vegetasi, sehingga air hujan jatuh dan mengalir sebagai air permukaan yang mengikis lapisan tanah penutup yang subur menjadi lahan tandus. Apabila hal tersebut dibiarkan, maka akan terjadi penurunan kualitas lingkungan, bahkan kadang-kadang terjadi banjir yang diikuti oleh kerusakan lahan beserta ekosistemnya yang berdampak negatif terhadap manusia.

Dalam perencanaan pengembangan suatu wilayah, aspek fisik dasar merupakân salah satu pertimbangan di samping aspek-aspek lainnya seperti sosial, budaya, ekonomi, dan pertahanan keamanan. Pertimbangan aspek fisik dasar sangat penting dalam upaya mengevaluasi kondisi lahan dan lingkungannya dalam memberikan masukan bagi penentuan strategi rancangan tata guna lahan. Gangguan lingkungan ini dikhawatirkan sewaktuwaktu bisa menimbulkan bencana yang serius.

Dengan mempertimbangkan masalah tersebut di atas, telah dilakukan penelitian kerentanan erosi di daerah Menado dan sekitarnya. Diharapkan hasil penelitian ini dapat mencegah atau paling tidak mengurangi bencana yang akan terjadi.

Lokasi daerah penelitian, secara geografis, terletak pada koordinat $02^{\circ} 20^{\prime}-02^{\circ} 35^{\prime}$ Lintang Utara dan $124^{\circ} 45^{\prime}-125^{\circ}$ Bujur Timur (Gambar 1). Secara administratif termasuk ke dalam wilayah Kota Manado dan Kota Tomohon, Provinsi Sulawesi Utara.

Tujuan penelitian adalah menghimpun data tentang erosi pada setiap bentuk lahan, kemudian membuat beberapa zonasi yang menggambarkan tingkat kerentanan erosi yang terjadi di daerah itu, yang kemudian dituangkan ke dalam bentuk peta. Hasil penelitian ini diharapkan dapat menambah khasanah ilmu kebumian dan data dasar yang dapat digunakan dalam menunjang perencanaan pembangunan, pengembangan wilayah, dan perencanaan tata ruang wilayah, dan bisa mencegah bencana erosi atau setidak-tidaknya mengurangi.

Metode penelitian yang dilakukan adalah penggunaan teknik penginderaan jauh. Untuk menunjang pelaksanaan ini digunakan potret udara skala 1:100.000 tahun 1982 dan potret udara skala

1:20.000 tahun 2004. Juga dilakukan penafsiran peta topografi skala 1:50.000 (Peta Rupabumi Indonesia) Lembar Manado, tahun 1991, serta mempelajari peta geologi (Lembar Manado skala 1: 250.000 (Effendi dan Bawono, 1977).

TATAAN GEOLOGI

Stratigrafi

Menurut Effendi dan Bawono (1997), secara stratigrafis batuan yang menyusun daerah ini (dari yang tua ke muda) terdiri atas: batuan gunung api (Tmv), Tuf Tondano (Qtv), batuan gunung api muda (Qv), endapan danau dan sungai (Qs) dan aluvium (Qal). (Gambar 2).

Batuan Gunung Api (Tmv)

Batuan gunung api ini terdiri atas breksi, lava, dan tuf. Satuan ini tersebar di sekitar Kuntung Tang, Kuntung Makaweimben, Kuntung Pulutan, Kuntung Kaluta, Pegunungan Tokalabo, dan sekitar Makalonsow (Gambar 2). Aliran lava pada umumnya berkomposisi andesit sampai basal. Breksi berbutir sangat kasar, berkomposisi andesit, sebagian bersifat konglomerat mengandung sisipan tuf, batupasir, batulempung, dan lensa batugamping. Batuan gunung api ini berumur Miosen Tengah.

Tuf Tondano (Qtv)

Batuan ini merupakan klastika kasar gunung api yang berkomposisi andesit, menyudut hingga menyudut tanggung, dicirikan oleh banyak pecahan batuapung, batuapung lapili, breksi, ignimbrit sangat padat, berstruktur aliran. Satuan ini tersebar di bagian barat daerah penelitian, yaitu sekitar daerah Taratara dan dibagian utara Minahasa, yaitu di daerah Wenang, Sawangan, dan Kuntung Patokan membentuk pegunungan yang bergelombang rendah. Endapan piroklastika ini diperkirakan berasal dari hasil letusan hebat pada waktu pembentukan kaldera Tondano.

Batuan sedimen Tersier terdiri atas breksi dan batu pasir, batu gamping, batuan gunung api, dan batuan sedimen (Ts), batuan gunung api tua terdiri atas andesit (Qtv), batuan gunung api tua terdiri atas lava, bom, lapili dan abu, batugamping terumbu koral (QI), Endapan danau dan sungai terdiri atas pasir, lanau, konglomerat dan lempung napalan. Semua batuan ini ditutupi oleh batuan aluvium yang terdiri atas bongkah, kerakal, kerikil, pasir, dan lumpur.

Gambar 1. Peta lokasi penelitian daerah Manado dan sekitarnya, Sulawesi Utara.

Batuan gunung api muda (Qv)

Batuan ini terdiri atas: lava, bom, lapili, dan abu yang membentuk gunung api strato muda seperti Gunung Mahawu dan Lokon. Lava yang dikeluarkan oleh Gunung Lokon terutama berkomposisi basal, sedangkan Gunung Mahawu berkomposisi andesit. Di Kampung Tataaran terdapat aliran obsidian yang mungkin berasal dari Gunung Tampusu. Satuan ini tersebar di timur laut daerah penelitian, yaitu di daerah Airmadidi, Paniki Atas, dan di bagian barat lembar, yaitu di sekitar Kentur Telempangan, Kentur Lokon, Kentur Mahawu, Kentur Pakelengan daerah Kinilov Masarang, Sawangan, Wailan Lahendong, dan Remboken. Satuan ini menyebar luas sekali, hampir menempati dua pertiga daerah penelitian.

Endapan danau dan sungai (Qs)

Endapan ini terdiri atas pasir, lanau, konglomerat, dan lempung napalan. Satuan ini tersebar di sekitar Tondano, Tataaran, Tonsealama, dan sedikit di bagian utara (sekitar Palduamas). Pada perselingan pasir lepas dan lanau, lapisan ini berangsur, setempat silang-siur. Konglomerat tersusun oleh pecahan batuan kasar, menyudut tanggung. Lempung napalan, berwarna hitam, mengandung moluska. Satuan ini membentuk undak dengan permukaan bergelombang.

Aluvium (Qal)

Endapan ini terdiri atas bongkah, kerakal, kerikil, pasir, dan lumpur. Satuan ini tersebar di sebelah utara kota Manado.

Struktur dan Tektonik

Pola sebaran struktur sesar aktif di daerah Danau Tondano dan sekitarnya menurut Setiawan dkk. (2002) memperlihatkan bahwa Danau Tondano diapit oleh dua sesar utama, yaitu Sesar Sonder dan Sesar Malalayang, berarah barat laut - tenggara, berupa sesar geser menganan, dengan kedudukan hampir sejajar. Sesar-sesar penyertanya terletak di sebelah timur, yaitu Sesar Kombi yang merupakan sesar mendatar menganan dan turun pada bagian yang menghadap ke Danau Tondano.
Sesar yang terdapat di sebelah barat Danau Tondano, yaitu Sesar Papakelan dan Sesar Tomohon, merupakan sesar sesar mendatar mengiri dan turun pada bagian yang menghadap ke Danau Tondano. Hal ini karena pada waktu terjadi kegiatan vulkanisme daerah tersebut menjadi kosong
(Setiawan dkk., 2002). Untuk menjaga keseimbangan, maka daerah sesar yang menghadap ke pusat kegiatan vulkanisme menjadi turun, dan sesar-sesar tersebut selain bergeser juga mengalami penurunan ke arah danau Tondano.
Bersamaan dengan itu, di bagian utara Lahendong terbentuk sesar naik yang disebabkan oleh adanya pola struktur di bagian utara sesar Sonder atau sesar Malalayang.
Struktur geologi yang ada di daerah penelitian terdiri atas sesar normal yang berarah barat laut tenggara. Daerah penelitian terletak di bagian timur Lengan Utara Sulawesi yang merupakan busur gunung api yang terbentuk karena adanya tunjaman ganda, yaitu Lajur Tunjạman Sulawesi Utara di sebelah utara lengan utara Sulawesi dan Lajur Tunjaman Sangihe Timur di sebelah timur dan selatan lengan utara Sulawesi (Simanjuntak, 1986 dalam Suharsono 2002).

Penunjaman tersebut mengakibatkan terjadinya kegiatan magmatisme dan kegunungapian yang menghasilkan batuan plutonik dan gunung api yang tersebar luas. Tunjaman Sulawesi Utara diduga aktif sejak awal Tersier dan merighasilkan busur gunung api Tersier, yang terbentang sekitar Toli-toli sampai dekat Menado. Sementara tunjaman Sangihe Timur diduga aktif sejak awal Kuarter dan menghasilkan lajur gunung api Kuarter di bagian timur lengan utara Sulawesi dan menerus ke arah barat daya hingga daerah Gunung Una-una.

GEOMORFOLOGI

Fisiografi

Kondisi morfologi daerah penelitian sebagian besar merupakan pegunungan, terutama di bagian tengah yang merupakan deretan gunung api membentang dari barat ke timur, yaitu: Gunung Tetempangan (1465 m), Lokon (1579 m), Mahawu (1372 m), Masarang (1262 m), Pinandelan (890 m), Tang (813 m), Pulutan (1158 m), Gunung Makalonsow (972 m), dan Gunung Kaluta (1165 m).
Bagian utara merupakan dataran rendah yang ditutupi oleh endapan aluvium dan gamping terumbu yang tumbuh di pinggir pantai. Endapan sungai banyak juga dijumpai dan penyebarannya cukup luas, terutama Sungai Tondano dan Sungai Malalayang di sebelah utara serta Sungai Tikjala dan Sungai Paniki di bagian tengah daerah penelitian.

Endapan danau dijumpai bagian selatan, yaitu di sekitar Danau Tondano yang pelamparannya cukup luas meliputi daerah Tataaran dan Tonsealama.

Tata Air

Daerah penelitian termasuk ke dalam daerah yang beriklim tropis, sehingga dipengaruhi oleh iklim lembab khatulistiwa, yang beriklim sedang dengan rata-rata curah hujan tahunan sebesar $3239,1 \mathrm{~mm}$. Curah hujan tertinggi sebesar $487,7 \mathrm{~mm}$ terjadi pada bulan Januari, dan curah hujan terendah sebesar $83,4 \mathrm{~mm}$ terjadi pada bulan Agustus (BMG Kayuwatu, Manado, 1995-2004). Sungai-sungai besar yang mengalir di daerah ini antara lain : Kuala Tondano, Kuala Tikala, Kuala Pakoba, Kuala Malalayang, dan Kuala Tingkulu.

Pola aliran sungai secara umum dapat dibagi menjadi dua, yaitu : yang pertama (bagian tengah) pola aliran yang memancar (radial), terutama pada tubuh gunung api, sedangkan yang kedua pola aliran sejajar (subparalel). Pola aliran kedua ini hampir tegak lurus pantai, tersebar di bagian barat, timur, dan di bagian utara daerah penelitian.

Geomorfologi Daerah Penelitian

Menurut Suharsono dkk. (2002) satuan morfologi daerah penelitian (Gambar 3) ditinjau dari bentukan asalnya dapat dipisahkan menjadi : bentukan asal vulkanik, denudasi, dan fluviatil.

Bentukan asal volkanik

Bentukan asal vulkanik terdiri atas kerucut gunung api, lereng gunung api, lereng kaki gunung api, aliran lava, dan padang solfatara serta fumarola. Bentukan asal vulkanik menempati sebagian besar daerah penelitian ($\pm 70 \%$) yang tersebar di bagian tengah, selatan, barat, dan timur lembar. Batuan penyusun pada bentuk lahan ini terdiri atas batuan gunung api muda, tuf Tondano, dan aluvium. Penggunaan lahannya berupa : kebun, sawah, tegal/ ladang, dan hutan.

Bentukan asal denudasi

Bentukan asal denudasi terdiri atas pegunungan vulkanik memanjang tertoreh, lereng pegunungan vulkanik memanjang tertoreh, dan bukit sisa. Bentukan asal denudasi ini dijumpai terpisah-pisah
antara yang satu dengan yang lainnya. Proses denudasi yang cukup intensif menyebabkan lahan sudah tidak mencerminkan lagi bentuk asalnya, terdapat di bagian utara, tenggara, dan sedikit di bagian barat lembar. Bentuk lahan ini menempati lebih kurang 30\% daerah penelitian. Batuan penyusunnya terdiri atas tuf Tondano dan batuan gunung api. Penggunaan lahannya berupa hutan belukar dan kebun.

Bentukan asal fluviatil secara morfografis dapat dibagi menjadi dataran aluvium, dataran banjir, dan kipas aluvium. Bentukan lahan ini menempati daerah seluas 5% dari lembar, yang terpencar satu sama lainnya dan mendominasi daerah pinggiran danau Tondano dan di sekitar pantai utara (Teluk Manado). Batuan penyusun lahan ini terdiri atas endapan danau, sungai, dan aluvium. Penggunaan lahannya untuk kebun dan persawahan.

HASIL PENGAMATAN LAPANGAN

Erosi merupakan salah satu proses alam yang dominan dalam evolusi bentukan lahan. Proses ini disebabkan oleh beberapa faktor, seperti: kecuraman lereng, jenis batuan/ tanah, iklim, dan kerapatan vegetasi. Namun, selain faktor alam, faktor luar juga memegang peranan penting, yaitu kegiatan manusia.

Bencana erosi merupakan salah satu akibat berkurangnya penutup lahan, terutama vegetasi, sehingga air hujan jatuh dan mengalir sebagai air permukaan yang mengikis lapisan tanah penutup yang subur menjadi lahan tandus. Apabila hal tersebut dibiarkan akan terjadi kerusakan lahan beserta ekosistemnya.
Variasi bentuk lahan yang terdapat di daerah penelitian terjadi akibat proses alam berupa pelapukan, erosi, transportasi, dan sedimentasi yang berlangsung sejak daratan ini muncul. Berdasarkan potret udara tahun 1982 skala 1:100.000, kondisi lahan masih berupa hutan lebat, dan potret udara tahun 2003 skala 1:20.000, kondisi lahan telah mengalami penggundulan akibat adanya illegal logging, sehingga proses erosi menjadi lebih cepat. Dari survai lapangan dapat diketahui bahwa proses perubahan bentuk lahan di daerah Manado dan sekitarnya, dipercepat oleh adanya kegiatan manusia.

Morfo-erosi daerah penelitian

Morfo-erosi merupakan bentuk erosi yang mencerminkan tingkat erosi suatu daerah. Bentuk erosi ini diimplementasikan berdasarkan pada kerapatan dan kedalaman erosinya.

Bentuk Erosi

Bentuk erosi di daerah penelitian dapat dikelompokkan menjadi empat jenis, yaitu : erosi limpas (sheet erosion), alur (ril erosion), galur (gully erosion), dan erosi jurang (ravine erosion) (Gambar $4,4 a, 4 b$ dan $4 c$).

Erosi limpas merupakan bentuk erosi pada lapisan tanah berupa hilangnya sebagian atau seluruh horizon A . Bentuk erosi ini mempunyai tingkatan sejauh mana erosi ini terjadi padâ lapisan tersebut. Kalau mengerosi sampai lapisan B, berarti tingkat erosinya tinggi.
Erosi limpas pada daerah penelitian tersebar merata (Gambar 4). Salah satu contohnya dapat dilihat di Foto 1 : ada yang rapat dan jarang dan penyebarannya, ada yang luas, tetapi ada pula yang sempit. Daerah-daerah yang mempunyai kerapatan tinggi biasanya menempati daerah yang telah terbuka atau daerah gundul, sedangkan di daerah dengan vegetasi rapat, erosi limpas jarang dijumpai.
Erosi limpas pada daerah-daerah gundul (tidak ada vegetasi), mempunyai tingkat sedang sampai tinggi. Erosi sedang tersebar di daerah selatan Lembar seperti di daerah Taratara, Rambunan, Uluindano, dan Talete, dan di daerah utara Lembar, yaitu di daerah Kamangta, Sampiri, Matungkas, dan Sario. Sementara yang masih banyak vegetasinya atau berhutan lebat mempunyai tingkat erosi lemah sampai nol, tersebar di daerah Sonder, Kulo, sebelah utara Talete, Kalasey, Malalayang dan Wenang, sekitar Maumbi dan Suwaan.
Erosi alur, adalah bentuk erosi yang mencapai kedalaman kurang dari 50 cm , dan mempunyai tingkatan berdasarkan jarak antaralurnya. Makin rapat jarak alurnya makin tinggi nilai tingkatannya, sedangkan makin renggang jaraknya akan makin rendah nilai tingkatannya.
Erosi alur di daerah penelitian (Gambar 4a) berkembang baik pada daerah-daerah yang tidak ada vegetasinya, yaitu pada daerah-daerah gundul,
seperti daerah penambangan dan daerah bukaan hutan. Contohnya dapat dilihat pada Foto 2,3 . Erosi alur tinggi tersebar di bagian tengah daerah penelitian, seperti di daerah Kentur Tetempangan, Kentur Lokon, Tunggari, Kuntung Pinandean, Kuntung Linamungan, Tingkulu, dan Mapanget. Erosi alur sedang tersebar di daerah Airmadidi, Mapanget, Kairagiweru, Pineleng, Talete, Lahendong Sawangan, Walian, dan Leilem. Erosi alur kecil tersebar di daerah Sekitar Maumbi, Kalasey, Sario, sebelah utara Sonder, sekitar Kinilow sebelah utara danau Tondano.

Erosi galur adalah bentuk erosi yang mempunyai kedalaman antara 50.500 cm , dan mempunyai tingkatan nilai berdasarkan jarak tiap galur. Makin dekat jaraknya nilainya makin tinggi, dan makin jauh jaraknya nilainya semakin kecil.
Erosi galur di daerah penelitian (Gambar 4b) penyebarannya hampir merata, baik pada daerah gundul ataupun daerah yang masih bervegetasi. Salah satu contoh erosi jenis ini dapat dilihat pada Foto 4. Erosi galur tinggi tersebar di daerah Kentur Tetempangan, Kentur Lokon, Kuntung Pinandelan, Kuntung Linamungan, dan Kuntung Kaluta. Erosi galur sedang tersebar di daerah Walian, Talete, Kuntung Tampusu, Sawangan, dan Airmadidi. Erosi galur kecil tersebar di daerah Maumbi, Sario, Malalayang, dan Kalasey.
Erosi jurang adalah bentuk erosi yang mencapai kedalaman lebih dari 500 cm dan mempunyai tingkatan sama dengan jeniss erosi yang lain. Makin rapat jaraknya, maka semakin tinggi nilai tingkatannya, dan semakin renggang jaraknya nilai tingkatannya semakin kecil.
Erosi jurang di daerah penelitian (Gambar 4c) terjadi di daerah-daerah yang mempunyai landaian lereng cukup terjal. Salah satu contohnya dapat dilihat pada Foto 5, 6. Erosi jurang dikelompokkan menjadi erosi tinggi, sedang, kecil, dan tidak ada erosi. Erosi jurang tinggi tersebar di Kentur Tetempangan, Kentur Lokon, Tunggari, Kuntung Pinandelan, Kuntung Makalonsow, dan Sawangan. Erosi jurang sedang tersebar di daerah Walian, Talete, Kuntung Tampusu, Suwaan, dan Sawangan. Erosi jurang kecil tersebar hanya berupa spot seperti di daerah Sario, Kalasey, Maumbi, Sonder, dan di sekitar Danau Tondano.

Foto 1. Erosi limpas. Lokasi Kp.Mapanget.

Foto 2. Erosi alur. Lokasi: Kp. Kairagi.

Foto 3. Proses perkembangan erosi alur yang mengikis batuan Formasi Tuf Tondano. Lokasi: Paalduamas.

Foto 4. Erosi galur dan mulai terbentuknya alur-alur kecil pada lereng lembah galur. Lokasi: Desa Kairagi.

Foto 5. Erosi Jurang-Lokasi: Desa Kairagi.

Foto 6. Erosi Jurang. Lokasi: Kp. Mapanget.

ఱ
Gambar 4a. Peta bentuk erosi limpas daerah Manado dan sekilamya, Sulawesi Utara.

Gambar 4b. Peta bentuk erosi alur daerah Manado dan sekitarnya, Sulawesi Utara.

Gambar 4d. Peta bentuk erosi jurang daerah Manado dan sekilarnya, Sulawesi Ulara.

DISKUSI / PEMBAHASAN.

Kemiringan lereng

Kemiringan lereng berpengaruh besar terhadap tingkat erosi; makin besar kemiringan lereng atau makin curam, maka tingkat erosi semakin besar, sedangkan makin kecil kemiringan lereng atau makin landai maka tingkat erosinya akan semakin kecil (Tabel 1).

Panjang lereng

Panjang lereng juga akan berpengaruh besar pada tingkat erosi; semakin panjang lereng yang terbentuk akan semakin tinggi tingkat erosinya (Tabel 2). Pengukuran panjang lereng ini dilakukan mulai dari puncak sampai tekuk lereng, dan dari tekuk lereng diukur sampai ke tekuk lereng berikutnya.

Bentuk lereng

Bentuk lereng yang cekung tingkat erosinya lebih kecil bila dibandingkan dengan yang cembung, sedangkan bentuk lereng yang kompleks tingkat erosinya lebih besar, bentuk lereng yang lurus tingkat erosinya akan lebih besar lagi (Tabel 3).

Soil / batuan

Soil yang tipis, akan mempunyai tingkat erosi yang lebih tinggi bila dibandingkan dengan soil yang tebal (Tabel 4). Hal ini karena soil yang tebal biasanya menempati posisi cekungan, sedangkan soil yang tipis biasanya menempati posisi lereng atau daerah yang miring/ landai, datar dengan alas batuan yang keras.

Batuan yang keras dan kompak akan tahan terhadap erosi, sedangkan batuan lunak, urai dan kurang kompak akan mudah tererosi.

Tekstur

Tekstur yang gambutan akan mempunyai derajat erosi yang kecil, dan tingkat erosinya akan menjadi besar pada kerikilan sampai pasir kasar, pasir menengah, pasir lempungan sampai lempungan dan pasir halus sampai lempung pasiran (Tabel 5)

Vegetasi

Penutup, lahan baik hutan atau tutupan lahan, bila $>75 \%$ akan mempunyai tingkat erosi yang kecil. Tingkat erosi akan makin besar bila tutupan lahan dalam persentasenya semakin kecil, dan tingkat erosi akan lebih besar bila tutupan lahan $<10 \%$ dan
terletak pada daerah yang tandus serta telah mengalami rombakan (Tabel 6).

Curah hujan

Daerah penelitian termasuk ke dalam daerah tropis yang setiap tahunnya mengalami musim penghujan yang mengakibatkan tingkat erosi tinggi (Tabel 7).

Bentuk Erosi

Erosi Limpas

Erosi limpas terjadi bila erosi telah menggerus lapisan horizon A, dan mempunyai tingkat erosi tinggi bila lapisan horizon A telah habis tererosi dan mulai mengerosi lapisan di bawahnya (Tabel 8).

Erosi Alur

Erosi alur dengan kedalaman antara $5-50 \mathrm{~cm}$, dan jarak kurang dari 5 meter mempunyai tingkatan erosi yang tinggi; bila berjarak 5-15 meter mempunyai tingkat erosi sedang, dan bila berjarak antara 15-50 meter alur tersebut mempunyai tingkatan yang tinggi (Tabel 9).

Erosi Galur

Erosi galur mempunyai variasi tingkatan dua buah, yaitu pada kedalaman antara $50-150 \mathrm{~cm}$ dan 150 500 cm . Kedalaman $50-150 \mathrm{~cm}$ pada jarak antara <5 - 15 m mempunyai tingkat erosi yang tinggi, sedangkan pada jarak 15 - 50 meter mempunyai tingkat erosi sedang, pada jarak 50-150 meter, mempunyai tingkat erosi yang rendah untuk kedalaman 150-500 cm, pada jarak < 5-50 meter mempunyai tingkat erosi yang tinggi (Tabel 9).

Erosi Jurang

Erosi jurang mempunyai rating yaitu pada kedalaman > 500 meter, dengan jarak sebagai berikut : untuk jarak < 5-150 meter mempunyai tingkat erosi tinggi dan pada jarak antara 150-500 meter mempunyai tingkat erosi yang rendah, sedangkan pada jarak >500 meter mempunyai tingkat erosi rendah (Tabel 9).

Rating

Apabila data ini telah dimasukkan, maka akan bisa dicari jumlah rating-nya. Rating setiap bentuk lahan ini kemudian dikelompokkan, dan dimasukkan ke dalam kelas erosi (Tabel 10).

Tabel 1. Klasifikasi Kemiringan Lereng

Besar lereng \%	Rating
$0-2$	1
$3-7$	4
$8-13$	8
$14-20$	16
$21-55$	24
$55-140$	32
>140	24

Tabel 2. Klasifikasi Panjang Lereng

Panjang lereng (m)	Rating
<15	1
$15-50$	2
$50-150$	4
$150-500$	6
>500	8

Tabel 3. Klasifikasi Bentuklereng

Panjang Tanah (cm)	Rating
>150	1
$100-150$	1
$50-100$	2
$25-50$	3
<25	4

Tabel 5. Klasifikasi Tekstur Tanah/Soil

Tekstur	Rating
Kerikilan/pasir kasar	1
Pasiran sedang	2
Lanauan dan lempungan	4
Pasir halus dan lanauan	8

Tabel 6. Klasiilikasi Kondisi Vegetasi/Penutup Lahan

Vegetas/Penutup Lahan	Rating
Sangat lebat (rumput, belukar, hutan)	1
Tanaman perkebunan/Pemukiman	2
Pohon musiman/ladang	3
Bekas hutan terbakar/tunas tumbuhan	6
Daerah tanpa tumbuhan	12

Tabel7. Klasifikasi Curah Hujan

Frekuensi curah hujan	Rating
Sekali dalam 10 tahun	1
Sekali dalam 1 tahun	2
Beberapa kali dalam 1 tahun	4

Tabel 9. Klasifikasi Bentuk Erosi Alur, Galur dan Jurang

Alur		Galur		Jurang		Rating
Kedalaman (cm)	Jarak (m)	Kedalaman (cm)	Jarak (m)	Kedalaman (cm)	Jarak (m)	
$5-50$	>50	$50-500$	>500	>500	$\gg 500$	0
	$15-50$		$150-500$		500	1
	$5-15$		$15-150$		$150-500$	2
	<5		$<5-15$		$<5-150$	4

Tabel 10. Jumlah Nilai Parameter Kerentanan Erosi dan Klasifikasinya

Rating	Klas	Keterangan
<16	1	Tidak ada erosi
$17-24$	2	Erosi lemah
$25-32$	3	Erosi sedang
$33-48$	4	Erosi tinggi
$46-64$	5	Erosi sangat tinggi
>64	6	Erosi tinggi sekali

Kelas Erosi

Di dalam kelas erosi ini di gambarkan bentuk-bentuk lahan yang mempunyai kelas erosi yang sama untuk digabung menjadi satu, maka akan diperoleh peta kerentanan erosi.

Peta kerentanan erosi di daerah penelitian dibuat secara manual berdasarkan perpaduan, yaitu dengan cara menumpangkan data peta bentuk erosi lembar, alur, galur dan jurang (Gambar 4a, 4b, 4c, 4d), kelerengan /kemiringan lereng (Gambar 5), panjang lereng (Gambar 6), bentuk lereng (Gambar 7), ketebalan tanah (Gambar 8), tekstur tanah (Gambar 9), vegetasi/penutup lahan (kondisi vegetasi dan curah hujan) (Gambar 10), dan bentuk erosi (erosi lembar, erosi alur, galur, dan jurang) yang telah mempunyai nilai tiap-tiap peta, sehingga setiap bentuk lahan tersebut akhirnya mempunyai nilai yang sebenarnya dengan cara menjumlahkan nilainilai yang ada dalam peta dari setiap bentuk lereng tersebut.

Untuk memperoleh dasar penilaian (rating), semua parameter tersebut di atas diklasifikasikan dengan mengacu kepada Van Zuidam (1985). Penentuan jenis bentuk erosi dilakukan dengan menggunakan interpretasi potret udara. Untuk menentukan tingkat erosi (Tabel 11), nilai masing-masing parameter dimasukkan ke dalam tabel klasifikasi kerentanan erosi masing-masing bentuk lahan. Hasil akhir penelitian ini adalah Peta Kerentanan Erosi (Gambar 11).

Kerentanan erosi di daerah Manado dan sekitarnya diklasifikasikan menjadi erosi sangat tinggi, erosi tinggi, erosi sedang, erosi lemah dan tidak ada erosi.
Tingkat erosi sangat tinggi terjadi pada bentuk lahan pegunungan vulkanik memanjang tertoreh, tersebar di daerah Kuntung Kalula, Kuntung Pulutan, Kuntung Tan, Kentur Lokon, Kentur Tetempangan, Kakaskasen, Talete, Rurukan, dan Suluan (Gambar 11) lereng gunung api a, lereng gunung api b, kerucut gunung api a dan kerucut gunung api b. Litologinya terdiri atas batuan gunung api muda (Qv) dan batuan gunung api (Tmv), kemiringan lereng berkisar mulai dari $8-55 \%$, panjang lereng antara $150->500 \mathrm{~m}$, bentuk lereng mayoritas cembung/kompleks, ketebalan soil berkisar antara 25-100 cm, tekstur tanah bervariasi mulai dari lanauan dan lempungan, pasir halus lanauan dan pasir kasar, tutupan lahan terdiri atas tegal/ ladang, kebun, dan hutan belukar.

Erosi tinggi terjadi pada bentuk lahan lereng kaki gunung api b, daerah Koka, Kamangta, Tombuluan lereng pegunungan vulkanik memanjang tertoreh, dan padang solfatara, dan fumarola (daerah Sawangan, Lahendong, Leilem, Tampusu, dan Tumatangtang, kemiringan lereng berkisar antara 8$55 \%$, panjang lereng $150-500 \mathrm{~m}$, bentuk lereng umumnya cembung, ketebalan soil $1-1,5 \mathrm{~m}$. Kondisi vegetasi/penutup lahan bervariasi berupa daerah pemukiman, kebun dan tegal/ladang belukar, dan rumput sangat lebat sampai daerah tanpa tetumbuhan. Curah hujan di daerah ini terjadi beberapa kali dalam setahun.

Erosi sedang terjadi pada bentuk lahan lereng kaki gunung api a, tersebar di daerah Kalasey, Tateli, Karombosan, dan Pineleng. Kemiringan lereng 8$13 \%$, panjang lereng $50-150 \mathrm{~m}$. Tekstur tanah lanauan dan lempungan dengan bentuk lereng umumnya cekung. Ketebalan soil $1->1,5 \mathrm{~m}$, dan tutupan lahan berupa daerah pemukiman dan kebun.

Erosi lemah umumnya terjadi pada bentuk lahan dataran antargunung, sebagian kecil di daerah dataran banjir dan lereng kaki gunungapi, tersebar di bagian utara daerah penelitian, daerah Wenang, Maumbi, Kolongan Sukur, dan Matungkas. Kemiringan lereng berkisar antara $0-7 \%$, panjang lereng $<15-50 \mathrm{~m}$ dengan bentuk lereng umumnya cekung, sebagian kecil cembung/kompleks lereng kaki gunungapi c . Ketebalan soil umumnya 100 cm , dan tekstur tanah lanauan dan lempungan, serta tutupan lahan berupa daerah pemukiman dan kebun.

Daerah yang tidak ada erosi terdapat pada bentuk lahan dataran aluvium, tersebar di bagian utara daerah penelitian, sekitar Teluk Manado (daerah Sarito, Kalasey, dan Malalayang). Kemiringan lereng $8-13 \%$, panjang lereng $15-50$ meter, bentuk lereng umumnya cekung. Ketebalan soil $1-1,5$ meter, tekstur tanah lanauan dan lempungan, dan tutupan lahan berupa daerah pemukiman dan kebun.

Untuk memperoleh rating maka semua parameter tersebut diklasifikasikan dengan mengacu kepada Van Zuidam (1985) (Lihat lampiran Tabel 1-10).

KESIMPULAN DAN SARAN

Berdasarkan morfogenesisnya, bentang alam di daerah penelitian dikelompokkan menjadi 3 (tiga) bentukan asal, yaitu bentukan asal vulkanik, denudasi, dan fluviatil.

Gambar 5. Peta kemiringan lereng daerah Manado dan sekitarnya - Sulawesi Utara.

Gambar 6. Peta panjang lereng daerah Manado dan sekitanya - Sulawesi Utara.

+
0
ω
Gambar 8. Peta ketebalan soil daerah Manado dan sekitarnya - Sulawesi Utara.
So!uvuí-029

Daerah penelitian merupakan daerah yang pembangunannya sedang berkembang dan dijadikan pusat aktivitas ekonomi untuk Provinsi Sulawesi Utara. Pembangunan di daerah ini mengakibatkan terjadinya pengurangan lahan hutan karena dijadikan pemukiman, persawahan, perkebunan, industri, dan penggalian bahan tambang yang kurang memperhatikan lingkungan. Kegiatan pembangunan ini mengakibatkan terjadinya erosi dan sedimentasi, serta meluasnya daerah genangan.

Kerentanan erosi yang terjadi pada bentuk lahan di daerah penelitian tidak selalu sama. Untuk bentuk lahan bekas dataran aluvium tidak terjadi erosi. Erosi lemah terjadi pada bentuk lahan lereng kaki gunung api c. Erosi sedang terjadi pada bentuk lahan lereng kaki gunung api a . Erosi tinggi teriadi pada bentuk lahan lereng gunung api c, aliran lava, bukit sisa, padang solfatara, fumarola, lereng kaki gunung api b dan lereng pegunungan yulkanik memanjang tertoreh. Sementara tingkat erosi sangat tinggi terjadi pada bentuk lahan pegunungan vulkanik memanjang tertoreh, lereng gunung api a, lereng gunung api b, kerucut gunung api a, dan kerucut gunung api b.

Bentuk lahan yang terjadi di daerah penelitian terjadi akibat siklus alam yang berupa pelapukan, erosi, transportasi, dan sedimentasi yang dipercepat oleh kegiatan manusia.

Untuk menanggulangi dampak erosi yang akan terjadi di masa mendatang, pemerintah daerah dan pihak-pihak yang terkait disarankan untuk memberikan penyuluhan intensif mengenai konservasi lahan, karena masyarakat belum memahami pentingnya lahan terkonservasi untuk kelangsungan hidupnya.

UCAPAN TERIMA KASIH

Terima kasih kami sampaikan kepada Kepala Pusat Survei Geologi yang memberikan kesempatan untuk mempublikasikan data daerah penelitian dan mendukung secara finansial kegiatan ini.

Terima kasih juga kami sampaikan kepada seluruh anggota tim (Kamawan dan Philip Waromi) atas kerja sama selama penelitian lapangan berlangsunge

ACUAN

Effendi, A.C, Bawono, S.S., 1977. Peta Geologi Lembar Menado, Sulawesi Utara skala 1 : 250.000, Pusat Penelitian dan Pengembangan Geologi Bandung.
Suharsono, 2002. Pemetaan Geomorfologi Lembar Menado, Provinsi Sulawesi Utara. Pusat Penelitian dan Pengembangan Geologi Bandung. Laporan interen.
Van Zuidam,R.A, 1985, Aerial photo Interpretation in Terrain Analysis and Geomorphologic Mapping, ITC, Smith Publishers The Hague.

Setiawan, J.H, Lumbanbatu, U.M dan Poedjoprajitno, S. 2002. Peta pola sebaran struktur sesar aktif daerah Danau Tondano dan sekitarnya. Pusat Penelitian dan Pengembangan Geologi Bandung. Laporan intern.

[^0]
[^0]: Naskah diterima : 23 Maret 2006
 Revisi terakhir : 6 November 2007

