Endapan Kipas Bawah Laut Kapur Akhir di Kalimantan

Late Cretaceous Submarine Fan Deposits in Kalimantan

Lauti Dwita Santy dan Rachmat Heryanto
Pusat Survei Geologi, Jl. Diponegoro 57, Bandung 40122, Email : racheri52@yahoo.com

Naskah diterima : 13 April 2015, Revisi terakhir : 01 Oktober 2015, Disetujui : 06 Oktober 2015

Abstract

Abstrak - Endapan kipas bawah laut berumur Kapur Akhir di Kalimantan, terdapat di dua tempat. Pertama di Tinggian Semitau Kalimantan Barat sebagai Formasi Selangkai dan Konglomerat Belikai. Kedua di Tinggian Meratus Kalimantan Selatan yang dikenal sebagai batuan sedimen Kelompok Pitap. Formasi Selangkai merupakan endapan turbidit jauhan (distal) dan Konglomerat Belakai merupakan endapan aliran gravitasi. Kelompok Pitap di Tinggian Meratus terdiri atas Formasi Pudak, Manunggul, dan Keramaian. Formasi Pudak tersusun oleh batuan sedimen klastika kasar (> pebble), merupakan endapan aliran gravitasi. Formasi Manunggul tersusun oleh batupasir dan konglomerat yang merupakan endapan saluran. Formasi Keramaian tersusun oleh sedimen klastika halus yang merupakan endapan turbidit jauhan. Batuan sedimen kedua kelompok tersebut termasuk ke dalam endapan kipas bawah laut, dimana Formasi Selangkai serta Formasi Keramaian merupakan kipas bagian bawah (lower fan), Formasi Manunggul merupakan kipas bagian tengah (middle fan), dan Konglomerat Belikai serta Formasi Pudak merupakan kipas bagian atas (upper fan). Pengendapan batuan sedimen Kelompok Pitap, diawali oleh adanya tranportasi masa sebelum pengendapan dan pada waktu pengendapan, dan dicirikan oleh adanya endapapan slumping yang menunjukan terjadinya di daerah tidak stabil. Sedangkan Formasi Selangkai dan Konglomerat Belikai diawali dengan turbidit dasar cekungan berupa laminasi halus, dan dicirikan oleh tidak adanya endapan slumping yang menunjukan bahwa pengendapannya terjadi di daerah yang stabil.

Kata kunci : Turbidit, aliran gravity, kipas bawah laut, dan Kapur.

Abstract

The Late Cretaceous submarine fan deposits in Kalimantan are found in two places. They are in the Semitau High, West Kalimantan as the Selangkai Formation and Belikai Conglomerate, and in the Meratus High, South Kalimantan as a sedimatry rocks of the Pitap Group. The Selangkai Formation is a distal turbidite deposit and the Belikai Conglomerate is a gravity flow deposits. The Pitap Group consists of the Pudak, Manunggul, and Keramaian Formations. The Pudak Formation is formed by coarse clasts (>pebbles) as gravity flow deposits. The Manunggul Formation is formed by sandstone and conglomerate of channel deposits. The Keramaian Formation consists of fine grain clasts as a distal turbidite deposits. These groups of sedimentary rocks occurred as submarine deposits, where the Selangkai and Keramaian Formations are as lower fans, the Manunggul Formation as middle fan, and the Belikai Conglomerate and Pudak Formation as upper fan. The depodition of Pitap Group was begun with a mass transport complex, it is characterized by the presence of slumping stuctures which indicates the unstable area. Whereas the deposition of the Selangkai Formation and Belikai Conglomerate were begun with sheet-like basin floor turbidites, which indicates the stable area.

Key word : Turbidite, gravity flow, submarine fan, and Cretaceous.

PENDAHULUAN

Batuan pra-Kenozoikum di Pulau Kalimantan terdiri atas batuan kerak benua dan kerak samudera. Kedua batuan kerak benua dan kerak samudera dijumpai dalam satu area, seperti yang dijumpai di Tingian Semitau, Kalimantan Barat dan di Tinggian Meratus Kalimantan Selatan. Di kedua tinggian tersebut dijumpai kelompok batuan sedimen berbutir halus sampai dengan konglomerat/breksi yang termasuk dalam Formasi Selangkai dan Konglomerat Belikai di Tinggian Semitau, serta batuan sedimen Kelompok Pitap di Tinggian Meratus. Lingkungan pengedapan kedua kelompok batuan sedimen tersebut akan dibahas dalam makalah ini.

Data yang dipergunakan dalam makalah ini adalah data lapangan yang dilakukan oleh penulis kedua sejak tahun 2000 di Tinggian Meratus Kalimantan Selatan dan hasil penelitian yang dilakukan oleh penulis pertama pada tahun 2010 di Tinggian Semitau Kalimantan Barat. Selain itu juga dipergunakan data sekunder dari penulis terdahulu.

Penelitian terdahulu di Tinggian Semitau diantaranya Williams dan Heryanto (1986), Sutjipto (1991), Heryanto drr. (1993), Lemigas (2004) dan Santy (2009 \& 2010). Sedangkan di Tinggian Meratus diantaranya Heryanto dan Sanyoto (1994), Sikumbang dan Heryanto (1994). Heryanto drr. (1998). Publikasi ilmiah secara regional di antaranya Hall (2012). Adapun secara lokal adalah Hartono drr. (2000), Heryanto (2010 dan 2014), Heryanto dan Hartono (2003), Heryanto drr. (2003), Panggabean dan Heryanto (2014), Santy (2014), dan Santy dan Panggabean (2013).

GEOLOGI REGIONAL

Geologi Kalimantan terbagi menjadi lima komplek geologi (Gambar 1) yaitu Kalimantan Barat, Pegunungan Schwaner, Pegunungan Meratus Semitau, Sentral Kalimantan, dan Batuan Kenozoikum (Hall dan Nicol, 2002). Tinggian Semitau dan Meratus termasuk ke dalam kompleks geologi Pegunungan Meratus-Semitau.

Komplek geologi Meratus-Semitau merupakan jalur struktur, teramati di Pegunungan Meratus, Kalimantan Tenggara dan di daerah Semitau, Kalimantan Barat. Komplek ini merupakan struktur tinggian, dan ditempati oleh batuan pra-Kenozoikum yang terdiri atas campuran batuan kerak benua dengan kerak samudera berumur Paleozoikum sampai Mesozoikum. Batuan ini
tercampurkan secara tektonik dimana satu sama lain dibatasi oleh kontak sesar, dan sebagian berupa batuan bancuh (melange). Di atasnya ditutupi oleh endapan kipas laut dalam berumur Kapur Akhir. Jalur struktur ini di bagian tenggara Kalimantan memanjang dengan arah baratdaya - timurlaut, membentuk Pegunungan Meratus (Heryanto 2010; Heryanto dan Hartono, 2003), dan di barat Kalimantan memanjang dengan arah barat - timur dan membentuk Tinggian Semitau (Heryanto drr., 1993).

Korelasi satuan batuan di Tinggian Semitau dan Tinggian Meratus tersaji dalam Gambar 2. Batuan tertua yang terdapat di Tinggian Semitau adalah Batuan Granit Kompleks Busang yang berumur 207-235 juta tahun (Pieters drr., 1993). Batuan tua lainnya adalah Komplek Semitau, tersusun oleh sekis hijau dan amfibolit serta sedikit batusabak, filit, batutanduk, dan kuarsit, telah terubahkan dan tergeruskaan serta terkristalisasi ulang. Umur kelompok ini adalah PeremTrias (Heryanto drr., 1993). Batuan ultra mafik yang tersusun oleh gabro, dolerit, dan basal yang sudah terubah. Batuan ini diperkirakan berumur Jura (Heryanto drr., 1993). Satuan Bancuh Boyan adalah breksi polimik tektonik dengan kepingan dan bongkah terdiri atas berbagai macam batuan dengan masa dasar yang telah tergeruskan. Kepingan dan bongkah pada umumnya menyudut dengan ukuran dari beberapa sentimeter sampai beberapa kilometer. Kepingan dari Bancuh Boyan terdiri atas bongkah rijang, batugamping Orbitolina, sekis, batuan ultramafik dan batuan beku menengah. Berdasarkan bongkah batugamping orbitolina diantaranya adalah Orbitolina scutum yang menunjukan umur Cenomanian (Kapur Awal bagian atas), umur Batuan Bancuh adalah Kapur Akhir (Williams \& Heryanto, 1986). Dalam umur yang sama diendapkan Formasi Selangkai dan Konglomerat Belikai.

Stratigrafi batuan pra-Kenozoikum di Tinggian Meratus telah dibahas dalam Heryanto (2000 dan 2010) dan Heryanto dan Hartono (2003). Batuan tertua di Tinggian Meratus adalah Granit Lumo yang berumur $260-315$ juta tahun, termasuk batuan granit tipe S, merupakan bagian kerak benua (Dirk and Amiruddin, 2000). Batuan Pratersier lainnya adalah batuan yang berumur Jura yang terdiri atas batuan sekis yang berumur 180 juta tahun (Zulkarnain drr., 1996) dan batuan plagiogranit yang berumur $155.27+16.29$ juta tahun (Dirk and Amiruddin, 2000), batuan ultramafik dan rijang yang berumur Jura- Kapur (Wakita drr., 1998). Adapun batuan yang berumur Kapur Awal adalah batuan Granit Belawayan yang berumur 103,100 $+3,23$

s/d 131,10 + 12,79 juta tahun (Hartono drr. 2000) dan batuan sekis yang berumur 115 juta tahun (Zulkarnain drr., 1996). Di atas batuan granit diendapkan batuan lempung Formasi Paniungan dan batugamping Orbitolina Formasi Batununggal yang mengandung fosil Orbitolina cf. oculata, Orbitolina $s p$. dan Orbitolina sp. primitiva dan menunjukan umur AptianAlbian atau bagian atas Kapur Awal (Situmorang, 1982). Secara tidak selaras di atas batuan tersebut diendapkan batuan sedimen Kelompok Pitap yang menjemari dengan batuan gunung-api Kelimpok Haruyan. Batuan sedimen Kelompok Pitap terdiri atas Formasi Pudak yang tersusun oleh batuan konglomerat sampai breksi dengan komponen terdiri atas batuan yang lebih tua berdiameter dari beberapa sampai puluhan sentimeter; Formasi Manunggul yang tersusun oleh batupasir dan konglomerat; dan Formasi Keramaian tersusun oleh batupasir halus. Ketiga formasi tersebut satu sama lain saling menjemari (Gambar 2). Batuan gunungapi Kelompok Haruyan terdiri atas Formasi Paau dan Formasi Pitanak. Formasi Paau tersusun oleh batuan gunungapi klastik mulai dari breksi sampai dengan batupasir. Formasi Pitanak terdiri
dari lava andesit berwarna kelabu (coklat bila lapuk), setempat berstruktur bantal.

FORMASI SELANGKAI DAN KONGLOMERAT BELIKAI, TINGGIAN SEMITAU

Formasi Selangkai diperkenalkan oleh Williamss \& Heryanto (1986) untuk batuan sedimen flysch di Tinggian Semitau di Lembar Sintang dan dipergunakan oleh Surono \& Noya (1989).

Formasi Selangkai di daerah Tinggian Semitau dijumpai sebagai singkapan di sepanjang jalur Palakota - Putussibau, Bukit Pabungkang, Sungai Seberuang, Bukit Pala, dan Belikai (Santy, 2010; Gambar 3, 4, 5). Runtunan Formasi Selangkai tersaji dalam Gambar 4, yaitu pada lokasi 10LS135, 10LS37, dan 10LS114 (Gambar 3A). Runtunan ini dimulai pada lokasi 10LS135 dengan perulangan perlapisan batupasir dan batulanau yang homogen dengan ketebalan 10-25 cm, berulang dengan pola agradasi. Singkapan ini sama dengan yang teramati oleh William dan Heryanto 1986 di Sungai Boyan (Gambar 6a).

Gambar 2. Korelasi satuan batuan Pratersier di Tinggian Semitau Kalimantan Barat dan Tinggian Meratus Kalimantan Selatan.

Sumber: Santy, 2010
Gambar 3. Lokasi titik-titik pengamatan daerah (A) Palakota dan (B) Tepuwai, Belikai.

[^0]Gambar 4. . Urutan stratigrafi Formasi Selangkai pada lokasi 10LS135,37,114, Palakota (Santy, 2010)

Sumber: Santy, 2010
Gambar 5. Kolom stratigrafi Konglomerat Belikai di lokasi 10LS118, (Santy, 2010).

Struktur sedimen yang dijumpai adalah laminasi sejajar di antaranya laminasi material karbon. Di tempat lain dijumpai laminasi silang-siur dan kusut (convolute) serta flute cast dan sole marks (Gambar 6b). Di atasnya pada lokasi 10LS37, dijumpai Konglomerat aneka bahan, warna abu-abu muda, tebal 3 meter, matrix supported, kepingan berukuran kerikil - bongkah, terdiri atas granit, diorit, batulempung, batupasir, dan bongkah-bongkah batuan sedimen. Matriks berupa batupasir ukuran butir kasar, bentuk butir membulat tanggung hingga menyudut tanggung, sortasi buruk, kemas terbuka, dengan komposisi mineral berupa feldspar, kuarsa, mineral hitam, dan karbon (Gambar 6c,d). Satuan ini ditindih satuan batupasir dan batulanau disisipi oleh laminasi karbon setebal 1 m . Di atasnya ditutupi batupasir setebal 6,5
m , berwarna abu-abu hingga putih keruh, lepas - lepas, keras, struktur internal masif, ukuran butir sedang, bentuk butir membulat tanggung, komposisi terdiri dari feldspar, kuarsa, kepingan batuan, mineral hitam, dan mineral karbon. Kemudian ditutupi lagi dengan batupasir dan batulanau disisipi oleh laminasi karbon setebal 1 m . Di atasnya pada lokasi 10LS114 dijumpai Perlapisan batupasir, warna abu-abu terang, berlapis tebal, ukuran butir sedang, keras, butir lepas-lepas, bentuk butir membulat tanggung, sortasi sedang, kemas tertutup, mengandung kuarsa, dan feldspar.

Konglomerat Belikai dijumpai pada lokasi 10LS118 (Gambar 3A dan 5). Konglomerat matrix supported, ukuran fragmen 5-30 cm, terdiri dari batupasir, batuan beku, dan kuarsa. Konglomerat menampakkan

Gambar 6. a. Perselingan batupasir dan batulumpur dengan ketebalan 5-25 cm, Formasi Selangkai yang tersingkap di Sungai Boyan (Williams \& Heryanto, 1986). b. struktur sedimen flute cast dan sole marks pada dasar batupasir Formasi Selangkai di daerah Semitau (Williams \& Heryanto, 1986). c,d. Endapan debris flow Formasi Selangkai pada lokasi 10LS 37, dengan bongkah-bongkah batuan sedimen dan kerakal aneka bahan (Santy, 2010). e. Singkapan Konglomerat Belikai dengan komponen terdiri atas kepingan batuan granit, merupakan endapan debris flow, tersingkap di daerah Belikai (Williams \& Heryanto, 1986). f. Bongkah-bongkah batugamping yang diperkirakan merupakan bongkah dalam satuan Konglomerat Belikai, tersingkap di daerah Belikai pada lokasi 10LS137 (Santy, 2010).
geometri membaji, dasar scouring memotong channel di bawahnya, butiran fragmen menampakkan gradasi normal dan imbrikasi dengan arah $\mathrm{N} 100^{\circ} \mathrm{E}$. Massa dasar tersusun oleh pasir kasar, warna abu-abu, warna lapuk coklat, sortasi buruk, butir membulat tanggung. Batuan ini berasosiasi dengan batupasir kerikilan warna abu-abu, warna lapuk coklat, sortasi jelek, kemas terbuka, keras, butir lepas-lepas. Williams \& Heryanto (1986), menamakan konglomerat ini sebagai Konglomerat Belikai (Gambar 6e). Bongkah besar batugamping Orbitolina yang merupakan fragmen pada Konglomerat Belikai, dijumpai di lokasi 10LS137 di daerah Belikai (Gambar 6f).

Kehadiran foraminifera dalam Formasi Selangkai di antaranya Lenticulina spp., Nodosaria sp., Eponides diversus, Heterohelix globusa, Globigerinelloides aspera, Globotruncana linneiana, Rotalipora sp. cf. R. greenhornensis, Heterohelix striata, dan Saracenaria sp., mengindikasikan umur formasi ini adalah Turonian. Dijumpainya fosil Orbitolina scutum dalam bongkah batugamping menunjukan umur batugamping tersebut adalah Cenomanian (Williams \& Heryanto,1986), hal ini memperlihatkan bahwa umur Konglomerat Belikai adalah lebih muda dari Cenomanian. Dengan demikian
umur dari Formasi Selangkai dan Konglomerat Belikai adalah Kapur Akhir lebih muda dari Cenomanian yaitu Turonian.

KELOMPOK PITAP, TINGGIAN MERATUS

Heryanto dan Hartono (2003) dan Heryanto (2010), memasukan batuan sedimen Kelompok Pitap ke dalam Kelompok Stratigrafi Kapur Akhir yang berhubungan tidak selaras dengan Kelompok Stratigrafi pra-Kapur Akhir. Batuan sedimen Kelompok Pitap menjemari dengan batuan gunung api Kelompok Haruyan yang terdiri atas Formasi Paau dan Formasi Pitanak.

Kelompok Pitap pertama kali diusulkan oleh Heryanto drr. (1998) di dalam peta geologi Lembar Belimbing skala 1 : 100.000. Kelompok ini merupakan pengembangan dari Formasi Pitap yang sebelumnya dipakai di dalam peta geologi skala $1: 250.000$, Lembar Sampanahan (Heryanto drr., 1994), Lembar Kotabaru (Rustandi drr., 1995), dan Lembar Amuntai (Heryanto dan Sanyoto, 1994). Kelompok Pitap tersusun oleh Formasi Pudak, Manunggul dan Keramaian yang satu sama lain saling menjemari (Gambar 2). Korelasi setiap formasi dari Kelompok Pitap, serta hubungannya dengan batuan yang lebih tua tersaji dalam Gambar 7.

Sumber: Heryanto, drr., 2003
Gambar 7. Diagram pagar Kelompok Pitap di Tinggian Meratus.

Sumber: Heryanto, drr., 2003
Gambar 8. Runtunan Formasi Pudak dan Keramaian, Kelompok Pitap di S. Amandit, sebelah barat laut Pegunungan Meratus

[^1]Gambar 9. Kolom stratigrafi Formasi Manunggul di daerah Alimukim, bagian tengah Tinggian Meratus.

Runtunan Formasi Pudak dan Keramaian tersaji dalam Gambar 8 dan Formasi Manunggul dalam Gambar 9.

Formasi Pudak dan Keramaian pertamakali diusulkan oleh Sikumbang (1986) dan dikelompokkan sebagai Kelompok Alino. Formasi Pudak berlokasi tipe di Sungai Pudak di daerah Kintap dan Formasi Keramai berlokasi tipe di Gunung Keramaian di daerah Pelaihari. Formasi Pudak tersusun oleh batupasir vulkanik berbutir kasar yang sebagian konglomeratan dan bersisipan breksi. Heryanto (2000) membagi Formasi Pudak di Sungai Pudak, di hulu Sungai Kintap menjadi dua (Gambar 7), yaitu bagian bawah ditempati endapan olistostrom (Sikumbang, 1986) yang tersusun terutama oleh batuan sedimen klastika kasar, berkomponen mulai dari beberapa sentimeter sampai dengan beberapa puluh meter, terdiri atas sebagian besar batuan gunung api serta batugamping, dan sedikit batupasir, batuan malihan, batuan beku dan batuan ultramafik dengan masa dasar batupasir vulkanik berbutir kasar yang sebagian konglomeratan (Gambar 10a), mengandung bongkah besar batugamping Orbitolina sebagai olistolit (Gambar 10b). Bagian atas Formasi Pudak terdiri atas batupasir vulkanik klastik berbutir sedang sampai kasar, dan konglomerat, dan sangat kompak. Setempat bersisipan breksi yang komponen utamanya batuan vulkanik, setempat batuan granitan (Gambar 10c), batuan ultramafik (Gambar 10d) dan batugampimg Orbitolina (Gambar 8), berukuran dari 5 cm sampai 30 cm , terpilah buruk, dengan massa dasar batupasir vulkaniklastik berbutir kasar dan sangat kompak, merupakan endapan aliran gayaberat (gravity flow). Penyebaran bagian atas meluas sampai ke Sungai Amandit dan daerah Paramasan di bagian utara Tinggian Meratus (Gambar 7 dan 8).

Formasi Keramaian disusun oleh batupasir vulkanik (volcanic arenite), bervariasi dari sangat halus - sedang, berselingan dengan batulanau dan batulempung, setempat bersisipan batugamping klastik halus. Perlapisan bervariasi dari 2 dan 50 cm (Gambar 10e) serta berstruktur sedimen perarian sejajar dan perarian terpelintir (convolute) yang menunjukkan endapan turbidit distal (Gambar 10f) serta setempat telah mengalami slumping (Gambar 10g). Di beberapa tempat dalam formasi ini dijumpai sisipan rijang yang mengandung fosil radiolaria.

Heryanto drr. (2003) membagi batuan di daerah Alimukim menjadi tiga bagian (Gambar 9). Pertama, Unit A teridiri atas perselingan batulumpur berwarna coklat kemerahan dengan batupasir berbutir sedang.

Kedua, Unit B terdiri atas perselingan batupasir berbutir sedang dan konglomerat polimik (Gambar 10h). Unit A dan B termasuk ke dalam Formasi Manunggul. Ketiga, Unit C vulkanik klastik yang terdiri atas tuf, batupasir dan breksi vulkanik. Unit C ini merupakan bagian dari Formasi Paau, Kelompok Haruyan. Bagian dari Formasi Paau dijumpai sebagai sisipan dalam Formasi Manunggul (Gambar 7 dan 9), menunjukkan bahwa hubungan kedua formasi tersebut menjemari (Heryanto drr., 1998).

Umur Formasi Pudak ditentukan dari salah satu bongkah besar yang terdapat di bagian bawah formasi ini yaitu batugamping Orbitolina dalam Olistolit Kintap (Sikumbang, 1986). Olistolit ini merupakan bagian dari Batugamping Batununggal mengandung fosil yang dikenali di antaranya adalah Orbitolina cf. oculata, Orbitolina sp. dan Orbitolina sp. primitiva yang menunjukan umur Aptian-Albian atau bagian atas Kapur Awal (Situmorang, 1982). Oleh karena itu maka umur Formasi Pudak adalah lebih muda dari bagian atas Kapur Awal, yaitu Kapur Akhir. Mikroflora nanoplangton yang ditemukan dalam serpih hitam agak gampingan yang berselingan dengan batupasir halus turbidit Formasi Keramaian, adalah Fasciculithus aubertae, Sphenolithus anarrhopus, Hornibrookina australis dan Ponthosphaera plana yang menunjukkan Lajur Discoaster multiradiatus atau Paleosen Akhir bagian atas (Robinson drr., 1996). Sepaian batugamping orbitolina yang berumur Aptian - Albian dijumpai dalam Formasi Pudak yang menjemari dengan Formasi Keramaian. Dengan demikian umur Kelompok Pitap adalah antara Kapur Akhir sampai Paleosen Akhir.

DISKUSI

Covault (2011) berpendapat bahwa endapan sedimen kipas bawah laut merupakan akumulasi detritus terbesar di bumi yang prosesnya melalui sistim saluranlembah (canyon-channel). Walker (1992) membagi awal pembentukan model kipas bawah laut menjadi dua (Gambar 11). Pertama, model kipas bawah laut yang pengendapannya diawali dengan kompleks transportasi massa, kemudian ditutupi oleh sistim channel-levee (Gambar 11A). Model ini dicirikan dengan adanya proses slumping pada awal pembentukan kipas bawah laut dan setelah pembentukan kipas bawah laut pada levee-overbank (levee-overbank slump) yang menunjukkan terjadinya di daerah yang tidak stabil.

Gambar10. a. Singkapan batupasir vulkanik klastik, konglomeratan Formasi Pudak, dengan komponen terdiri atas batuan beku, sedimen dan malihan. Tersingkap di Sungai Pudak (Heryanto, 2000); b. Singkapan batugamping Orbitolina di Sungai Pudak, merupakan Olistolit dalam Formasi Pudak (Heryanto, 2000); c. Breksi (gravity flow) Formasi Pudak, kepingan yang didominasi oleh batuan granitan, tersingkap di Sungai Halakau (Heryanto drr., 2003); d. Breksi (endapan gravity flow) Formasi Pudak, fragmen didominasi batuan ultramafik, tersingkap di Sungai Limpaho (Heryanto drr., 2003); e. Perselingan batulumpur dan batupasir berbutir halus Formasi Keramaian tersingkap di Sungai Amandit (Heryanto drr., 2003); f. Singkapan batupasir halus Formasi Keramaian, menunjukkan struktur sedimen laminasi sejajar, sangat kompak, tersingkap di Sungai Satui (Heryanto, 2000); g. Singkapan batuan sedimen Formasi Karamaian, telah mengalami slumping. Tersingkap di jalan batubara di daerah Binuang (Heryanto, 2010); h. Singkapan konglomerat Formasi Manunggul dengan komponen batugamping orbitolina, batuan beku, sedimen dan malihan, tersingkap di jalan kayu PT. Hendratna (Heryanto drr., 2003).

Sumber: Walker, 1992
Gambar 11. Model kipas bawah laut. A. Model dimana pengendapan kipas dimulai dengan komplek transportasi material yang kemudian ditutupi oleh sistim channal-levee. B. Model dimana pengendapan kipas dimulai dengan dasar cekungan berlapis tipis (sheet-like), kemudian ditutupi oleh sistim channel-levee.

Kedua, model kipas bawah laut yang diawali dengan turbidit dasar cekungan laminasi halus atau lapisan E turbidit Bouma (1962), kemudian ditutupi oleh sistim channel-levee (Gambar 11B). Model ini dicirikan oleh tidak adanya proses slumping, baik sebelum terjadinya endapan kipas bawah laut atau setelahnya, yang menunjukkan terjadinya di daerah stabil. Perulangan perlapisan batupasir dan batulanau yang homogen dengan ketebalan $10-25 \mathrm{~cm}$, berulang dengan pola agradasi (Gambar 6a), dijumpai pada Formasi Selangkai (Gambar 4). Pada lokasi formasi yang sama juga dijumpai struktur sedimen perarian silang siur, perarian terpelintir (convolute), flute cast dan sole marks (Gambar 6b). Runtunan ini termasuk ke dalam struktur sedimen turbidit Bouma (1962) lapisan C dan D , yang menunjukkan bahwa satuan ini termasuk turbidit jauhan (distal turbidite). Sedangkan menurut Walker (1992), runtunan seperti ini adalah termasuk endapan kipas bawah laut (submarine fan) pada kipas bagian bawah (lower fan).

Konglomerat aneka bahan, tebal 3 meter, matrix supported, fragmen berukuran kerikil - bongkah, terdiri atas granit, diorit, batulempung, batupasir, dan bongkah-bongkah batuan sedimen. Matriks berupa batupasir ukuran butir kasar, bentuk butir membulat tanggung hingga menyudut tanggung, sortasi buruk, kemas terbuka. Batuan ini merupakan paket endapan turbidit dekatan (proximal turbidite) berupa konglomerat aneka bahan dengan matriks batupasir kasar tersortasi buruk, dengan geometri lobe yang merupakan hasil longsoran bawah air atau debris flow (indikasi endapan proximal fan / upper fan). Di atasnya ditutupi batupasir halus dan batulanau dengan laminasi karbon setebal 1 meter yang merupakan endapan levee. Kemudian ditutupi oleh batupasir berwarna abu-abu hingga putih keruh, kemas terbuka, keras, struktur internal masif, ukuran butir sedang, bentuk butir membulat tanggung, komposisi terdiri atas feldspar, kuarsa, kepingan batuan, mineral hitam, dan mineral karbon, setebal 6 meter yang merupakan endapan saluran (channel) pada middle fan (Gambar 4 \& 6c, d).

Endapan lereng dijumpai pada lokasi 10LS118 di daerah Belikai (Gambar 5 \& 6e), tersusun oleh perselingan antara konglomerat dan pasir kerikilan sebagai endapan gravity flow. Konglomerat matrix supported, ukuran fragmen $5-30 \mathrm{~cm}$, terdiri atas batupasir, batuan beku, dan kuarsa. Konglomerat menampakkan geometri membaji, dasar scouring memotong channel di bawahnya, butiran menampakkan gradasi normal dan imbrikasi dengan arah aliran $\mathrm{N} 100^{\circ} \mathrm{E}$. Matrix terdiri atas pasir kasar,
warna abu-abu, warna lapuk coklat, sortasi buruk, butir membulat tanggung.
Data tersebut di atas menunjukkan bahwa runtunan batuan yang menyusun Formasi Selangkai dan Konglomerat Belikai adalah merupakan endapan kipas bawah laut. Hal ini ditunjukkan oleh Konglomerat Belikai dan sisipan konglomerat pada Formasi Selangkai sebagai endapan lereng atau endapan kipas bagian atas (upper fan). Kemudian lapisan tebal batupasir pada Formasi Selangkai adalah merupakan endapan saluran bawah laut (submarine channel) pada kipas bagian tengah (middle fan) dengan sisipan batupasir halus dan batulanau dengan laminasi karbon merupakan endapan levee. Kemudian perulangan perlapisan batupasir dan batulanau yang homogen dengan ketebalan $10-25 \mathrm{~cm}$, berulang dengan pola agradasi merupakan endapan lower fan. Runtunan ini menurut model endapan kipas bawah laut Walker (1992), termasuk model kedua (Gambar 11B), yaitu model kipas bawah laut yang diawali dengan turbidit dasar cekungan laminasi halus, model ini dicirikan oleh tidak adanya proses slumping, baik sebelum terjadinya endapan kipas bawah laut atau setelahnya, yang menunjukan terjadinya di daerah yang relatif stabil.

Endapan olistostrom (Sikumbang, 1986) dijumpai pada Sungai Pudak, di hulu Sungai Kintap (Gambar 7), berkomponen mulai dari beberapa sentimeter sampai dengan puluhan meter, terdiri atas batuan gunungapi, batugamping, batupasir, batuan malihan, batuan beku dan batuan ultramafik dengan masa dasar batupasir vulkanik berbutir kasar yang sebagian konglomeratan (Gambar 10a), mengandung bongkah besar olistolit batugamping Orbitolina (Gambar 10b). Hal ini menunjukkan bahwa bagian bawah Formasi Pudak diendapkan pada lereng benua (continental slope). Dijumpainya endapan aliran gayaberat (gravity flow) berupa sisipan breksi polimik dan adanya endapan slumping (Gambar 8), juga menunjukkan bahwa adanya longsoran lereng curam yaitu lereng benua (continental slope). Komponen kepingan yang beraneka menunjukkan bahwa lereng tempat terjadinya longsoran tersebut terdiri atas beberapa macam batuan. Hal ini menunjukkan bahwa lereng tersebut merupakan kompleks imbrikasi dari batuan kelompok stratigrafi pra Kapur Akhir. Setempat didominasi oleh salah satu jenis batuan (Gambar 10c, d), memperlihatkan bahwa longsoran terjadi pada salah satu jenis batuan (Heryanto drr., 2003). Adanya lapisan konglomerat pada Formasi Pudak (Gambar 8) dan Formasi Manunggul (Gambar 9) mencerminkan adanya distribusi saluran. Hal ini menujukkan lingkungan saluran bawah laut (submarine
channel) atau kipas saluran bawah laut (submarine fan) tepatnya pada kipas bagian atas (upper fan).

Sedangkan adanya lapisan batupasir pada Formasi Manunggul (Gambar 9) merupakan endapan saluran pada kipas bagian tengah (middle fan). Sedangkan adanya lapisan batulempung adalah sebagai endapan levee pada kipas bagian tengah (middle fan). Data tersebut menunjukkan bahwa lingkungan pengendapan yang cocok buat Formasi Pudak adalah pada lereng benua berupa saluran bawah laut tepatnya kipas bawah laut di mana lerengnya berupa imbrikasi dari batuan kelompok stratigrafi pra Kapur Akhir dan posisinya pada lereng (slope) sampai kipas atas (upper fan), sedangkan Formasi Manunggul pada kipas bagian atas sampai tengah (Heryanto, 2010; Heryanto drr., 2003).

Struktur sedimen yang dijumpai dalam Formasi Keramaian adalah perarian sejajar dan terpelintir (convolute) yang mencerminkan endapan turbidit jauhan atau lapisan C dan D turbidit Bouma (1962). Runtunan ini termasuk ke dalam endapan kipas bawah laut (submarine fan) pada kipas bagian bawah (lower fan). Adanya runtunan Formasi Keramaian yang telah mengalami slumping (Gambar 10 g), yang diduga terjadi di levee-overbank pada kipas bagian tengah (Walker, 1992; Gambar 11A). Oleh karena itu proses pengendapan batuan sedimen Kelompok Pitap di Tinggian Meratus menurut model kipas bawah laut (Walker, 1992) termasuk ke dalam model pertama (Gambar 11A) yaitu model kipas bawah laut yang pengendapannya diawali oleh kompleks transportasi massa, yang kemudian ditutupi oleh sistim channellevee. Model ini dicirikan dengan ada adanya proses slumping pada awal pembentukan kipas bawah laut dan selama pembentukan kipas bawah laut di leveeoverbank (levee-overbank slump) pada kipas bagian tengah (middle fan). Hal ini menunjukkan bahwa batuan sedimen Kelompok Pitap terendapkan sebagai kipas bawah laut (submarine fan), dan terjadinya di daerah dengan kondisi yang tidak stabil. Proses pengendapan yang diawali oleh komplek tranportasi masa terjadi juga di laut dalam Brunei (Maulana dan Hakimi, 2013).

Dengan demikian Formasi Pudak di Tinggian Meratus dan Konglomerat Belikai di Tinggian Semitau terendapkan dalam kipas bawah laut pada lereng sampai bagian atas. Formasi Manunggul di Tinggian Meratus terendapkan dalam kipas bagian tengah. Adapun Formasi Selangkai di Tinggian Semitau dan Formasi Keramaian di Tinggian Meratus terendapkan pada kipas bagian tengah-bawah. Pengendapan batuan sedimen Kelompok Pitap termasuk ke dalam model pertama
kipas bawah laut dari Walker (1992; Gambar 11A). Model ini dicirikan oleh adanya tranportasi masa sebelum pengendapan. Hal ini dicirikan oleh adanya endapan olistostrom pada bagian bawah Formasi Pudak, dengan olistolit batugamping Orbitolina, dan adanya slumping pada Formasi Pudak (Gambar 8). Kemudian selama pengendapan dicirikan adanya slumping pada Formasi Keramaian (Gambar 10g) sebagai levee-overbank slump pada kipas bagian tengah. Hal ini menunjukkan bahwa batuan sedimen Kelompok Pitap terendapkan dalam daerah tidak stabil yang dicirikan dengan adanya slumping. Sedangkan Formasi Selangkai dan Konglomerat Belikai termasuk model kedua kipas bawah laut dari Walker (1992; Gambar 11B), yaitu model kipas bawah laut yang diawali dengan turbidit pada dasar cekungan perarian halus yang dicirikan oleh tidak adanya endapan slumping dan menunjukkan bahwa pengendapannya terjadi di daerah yang stabil.

Formasi Selangkai dan Konglomerat Belikai di Tinggian Semitau, Kalimantan Barat dengan Kelompok Pitap (Formasi Pudak, Manunggul dan Keramaian) di Tinggian Meratus, Kalimantan Selatan diendapkan dalam dalam lingkungan yang sama yaitu di tepian kontinen (continental margin) sebagai endapan kipas bawah laut, mulai dari lereng benua sampai dengan kipas bawah. Kontinen tersebut sebagai batuan sumber dari endapan kipas bawah laut adalah mikro kontinen SW Borneo yang merupakan pecahan dari Benua Australia bergerak ke barat laut, kemudian menyatu dengan daratan Sunda (Sundaland) pada zaman Kapur Awal (Hall, 2012).

KESIMPULAN

Formasi Selangkai dan Konglomerat Belikai di Tinggian Semitau, Kalimantan Barat dan Kelompok Pitap yang terdiri atas Formasi Pudak, Manunggul dan Keramai di Tinggian Meratus, Kalimantan Selatan diendapkan sebagai endapan kipas bawah laut. Konglomerat Belikai dan Formasi Pudak terendapkan dalam lereng sampai Kipas bagian atas. Formasi Manunggul terendapkan dalam kipas bagian tengah. Kemudian Formasi Selangkai dan Formasi Keramain terendapkan dalam kipas bagian tengah sampai bawah. Pengendapan batuan sedimen Kelompok Pitap termasuk ke dalam model pertama kipas bawah laut, yaitu yang dicirikan oleh adanya tranportasi masa sebelum pengendapan dan pada waktu pengendapan, dan menunjukkan terjadinya di daerah tidak stabil.

Sedangkan Formasi Selangkai dan Konglomerat Belikai termasuk model kedua kipas bawah laut, yaitu model kipas bawah laut yang diawali dengan turbidit dasar cekungan laminasi halus yang dicirikan oleh tidak adanya endapan slumping dan menunjukkan bahwa pengendapannya terjadi di daerah yang stabil.

Formasi Selangkai dan Konglomerat Belikai berumur Kapur Akhir, sedangkan Kelompok Pitap berumur Kapur Akhir sampai Paleosen.

UCAPAN TERIMA KASIH

Ucapan terima kasih terutama ditujukan kepada Kepala Pusat Survei Geologi yang telah memberikan dukungan mulai dari penelitian lapangan sampai dengan penulisan makalah ini. Selain itu, ucapan terima kasih ini juga ditujukan kepada rekan sejawat yang telah mendukung penelitian ini serta memberikan kritik, saran dan diskusi mengenai isi makalah ini.

ACUAN

Bouma, A.H., 1962. Sedimentology of same flysch deposits, a graphic approach to facies sedimentation. Elsevier, Publishing Co, New York, Amesterdam.

Covault, J. A. (2011) Submarine Fans and Canyon-Channel Systems: A Review of Processes, Products, and Models. Nature Education Knowledge 3 (10) : 4, www.nature.com/scitable/knowledge/library/submarine-fans-and-canyon-systems-a-24178428.
Dirk, M.H.J., \& Amiruddin, 2000. Batuan Granitoid. Dalam : U. Hartono, R. Sukamto, Surono and H. Pangambean (Eds), Evolusi Magmatik, Kalimantan Selatan., Publikasi Khusus, Pusat Penelitian dan Pengembangan Geologi, No. 23, Desember 2000.
Hall, R., 2012. Late Jurassic - Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 570-571, 1-41, www.elsevier.com/locate/tecto.
Hall, R. \& Nichols, G., 2002. Cenozoic sedimentation and tectonics in Borneo : climatic influences on orogenesis. In : Jones, S.J. and Frostick, L. (Eds) : Sediment Flux to Basin: Causes, Controls and Consequences. Geological Society of London, Special Plublications, 191, 5-22.

Hartono, U., Sukamto, R., Surono, \& Panggabean, H., 2000. Evolusi Magmatik Kalimantan Selatan. Publikasi Khusus No 23, Pusat Penelitian dan Pengembangan Geologi, Bandung.
Heryanto, R., 2000. Pengendapan batuan sedimen Kelompok Pitap di bagian selatan Pegunungan Meratus. Jurnal Geologi dan Sumberdaya Mineral, X (109), h. 2-19.
Heryanto, R., 2010. Geologi Cekungan Barito, Kalimantan. Badan Geologi, Kementrian Energi dan Sumber Daya Mineral. 139 h (Buku).

Heryanto, R., 2011. Laporan Kegiatan Deswork Atlas Cekungan Barito, Kalimantan, Pusat Survei Geologi Bandung (Tidak Terbit)
Heryanto, R., 2012. Laporan Kegiatan Deswork Atlas Cekungan Melawi dan Ketungau, Kalimantan Barat., Pusat Survei Geologi Bandung (Tidak Terbit)

Heryanto, R., 2014. Batubara Formasi Tanjung sebagai batuan sumber hidrokarbon di Cekungan Barito. Jurnal Geologi dan Sumberdaya Mineral, Vol. 15, No. 3, Agustus 2014. H. 105-115.
Heryanto, R., Harahap, B.H., Sanyoto, P., Williams, P.R. \& Pieters, P.E., 1993. Peta Geologi Lembar Sintang, Kalimantan, skala $1: 250.000$. Pusat Penelitian dan Pengembangan Geologi, Bandung.
Heryanto, R. \& Sanyoto, P., 1994. Peta Geologi Lembar Amuntai, Kalimantan Selatan, sekala 1:250.000. Pusat Penelitian dan Pengembangan Geologi, Bandung.
Heryanto, R., Supriatna, S., Rustandi, E., \& Baharudin., 1994. Peta Geologi Lembar Sampanahan, sekala 1:250.000. Pusat Penelitian dan Pengembangan Geologi, Bandung.
Heryanto, R., Sutrisno, Sukardi, \& Agustianto, D., 1998. Peta Geologi Lembar Belimbing, Kalimantan Selatan Skala 1 : 100.000. Pusat Penelitian dan Pengembangan Geologi, Bandung.

Heryanto, R., \& Hartono, U., 2003. Stratigraphy the Meratus Mountains, South Kalimantan. Jurnal Geologi dan

[^0]: Sumber: Santy, 2010

[^1]: Sumber: Heryanto, drr., 2003

