Pemetaan Geologi Gunung Api Dijital Daerah Ngebel, Madiun berdasarkan Data Reflektansi dan Suseptibilitas Magnetik Batuan
DOI:
https://doi.org/10.33332/jgsm.geologi.v18i4.338Abstract
This study was taken as a part of volcano geology mapping at Ngebel area including volcanostratigraphy and structural geology interpretations by optimizing the satellite remote sensing and terestrial data. Ngebel area is located at the western flank of Mt. Wilis volcanic complex, Madiun District, East Java, Indonesia. The purpose of this study is to obtain the effectiveness of atmospherically corrected satellite image of Landsat-8 OLI (Operational Land Imager) TIRS (Thermal Infrared Sensor) and rock magnetic susceptibility for identifying volcanic products. The Landsat-8 OLI/TIRS image processing is performed in two steps: pre and post field observation. The pre field observation step was treated by processing and analysing the Landsat-8 OLI/TIRS to produce geomorphological units, circular/linear feature, rock unit boundary, and interpreted eruption center by examining image color, tone, and texture. Furthermore, the reflectance spectra analyses of Landsat-8 OLI/TIRS were obtained to define detailed volcanic product unit boundary after the field observation performed. Magnetic susceptibility of the rocks was used to classify the volcanostratigraphic units based on their magnetization degree of the induced rocks. Considering the magnetic susceptibility, there are suggested two groups of volcanic unit or Hummocks (Gumuk): Hummock of Ngebel with low susceptibility (9.9×10-3 – 20.7×10-3) and Hummock of Manyutan with medium (20.7×10-3 – 48.7×10-3) to high susceptibility (≥48.7×10-3). Noticing the reflectance spectra of Landsat-8 OLI/TIRS, it can be defined five volcanic rock units: pyroclastic fall Ngebel (reflectance value at 0.63 – 0.71), pyroclastic flows Ngebel (reflectance value at 0.71 – 0.74), pyroclastic flow Manyutan (reflectance value at 0.74 – 0.78), lava Manyutan 1 (reflectance value at 0.78 – 0,84), and Lava Manyutan 2 (reflectance value at ≥0.84).
Keyword: Volcanostratigraphy, Landsat-8 OLI/TIRS, magnetic susceptibility, reflectance, Ngebel
Downloads
References
Chavez, P.S., 1996. Image-based atmospheric corrections – revisited and improved. Photogrammetric Engineering and Remote Sensing, vol. 62, No. 9:1025-1036.
Darman, H. dan Sidi, F. H., 2000. An outline of the geology of Indonesia. Ikatan Ahli Geologi Indonesia, 192 hal., Jakarta.
Hartono, U., Baharuddin, dan Brata, K., 1992. Peta geologi lembar Madiun, Jawaskala 1:100.000, Pusat Penelitian dan Pengembangan Geologi, Direktorat Geologi, Indonesia.
Heritage Geophysics Inc., 2003. Magnetic susceptibility meter SM-30 User's Manual. Heritage Geophysics, Littleton, Colorado, hal. 1-47.
Huete, A. R., Liu, H., Batchily, K., dan van Leeuwen, W., 1997. A comparison of vegetation indices over a global set of TM images for EOS-MODIS: Remote Sens. Environ., vol. 59, no. 3, hal. 440–451.
Lee, M.D. dan Morris, W.A., 2013. Comparison of magnetic-susceptibility meters using rock samples from the Wopmay Orogen, Northwest Territories, Canada; Geological Survey of Canada, Technical Note 5, hal. 1-7, doi:10.4095/292739
Levin, N., 1999. Fundamentals of Remote Sensing: The 1st Hydrographic Data Management course, IMO - International Maritime Academy, Trieste, Italy.
Matsuda, I., 2004. River morphology and channel processes in fresh surface water, [Ed. James C.I. Dooge], Encyclopedia of Life Support Systems (EOLSS), Eolss Publishers, Oxford, UK.
Milsom, J., 2003. Field geophysics, 3rd ed. John Wiley & Sons Ltd., England. 249 hal.
MRI Energy, 2013. Survei pendahuluan potensi panas bumi gunung wilis. laporan LAPI ITB (tidak dipublikasikan).
Saepuloh A., Koike K., dan Omura M., 2012. Applying bayesian decision classification to Pi-SAR polarimetric data for detailed extraction of the geomorphologic and structural features of an active volcano. IEEE Geoscience and Remote Sensing Letters (GRSL), Vol. 99, No. 4, hal. 554-558.
Saepuloh A., Koike K., Omura M., Iguchi M., dan Setiawan A., 2010. SAR- and gravity change-based characterization of the distribution pattern of pyroclastic flow deposits at Mt. Merapi during the past ten years, Bulletin of Volcanology, vol. 72, no. 2, hal. 221-232, doi: 10.1007/s00445-009-0310-x, August 2010.
Saepuloh A., Sumintadireja A, dan Suryantini, 2004. Geologi gunung Guntur, Kabupaten Garut berdasarkan interpretasi citra ASTER, Buletin Geologi, Departmen Teknik Geologi, ITB vol. 36, no. 3, hal. 91-105.
Sribudiyani, Muchsin, N., Ryacudu, R., Kunto, T., Astono, P., Prasetya, I., Sapiie, B., Asikin, S., Harsolumakso, H.H., dan Yulianto, I., 2003. The collision of the East Java microplate and its implication for hydrocarbon occurence in the East Java basin: Proceedings of the 29th Annual Convention of Indonesian Petroleum Association (IPA), hal 1-12.
Yuwono, Y. S., 2004. Panduan pemetaan vulkanik. Laboraturium Petrologi dan Geologi Ekonomi, ITB, Bandung.
Downloads
Published
Issue
Section
License
Authors who publish articles in Jurnal Geologi dan Sumberdaya Mineral (JGSM.Geologi) agree to the following terms:
- Authors retain copyright of the article and grant the journal right of first publication with the work simultaneously licensed under a CC-BY-NC or The Creative Commons Attribution–ShareAlike License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)