Pemetaan Geologi Gunung Api Dijital Daerah Ngebel, Madiun berdasarkan Data Reflektansi dan Suseptibilitas Magnetik Batuan

Authors

  • Asep Saepuloh
  • Raditya Andrean Saputra
  • Prihadi Sumintadireja

DOI:

https://doi.org/10.33332/jgsm.geologi.v18i4.338

Abstract

This study was taken as a part of volcano geology mapping at Ngebel area including volcanostratigraphy and structural geology interpretations by optimizing the satellite remote sensing and terestrial data. Ngebel area is located at the western flank of Mt. Wilis volcanic complex, Madiun District, East Java, Indonesia. The purpose of this study is to obtain the effectiveness of atmospherically corrected satellite image of Landsat-8 OLI (Operational Land Imager) TIRS (Thermal Infrared Sensor) and rock magnetic susceptibility for identifying volcanic products. The Landsat-8 OLI/TIRS image processing is performed in two steps: pre and post field observation. The pre field observation step was treated by processing and analysing the Landsat-8 OLI/TIRS to produce geomorphological units, circular/linear feature, rock unit boundary, and interpreted eruption center by examining image color, tone, and texture. Furthermore, the reflectance spectra analyses of Landsat-8 OLI/TIRS were obtained to define detailed volcanic product unit boundary after the field observation performed. Magnetic susceptibility of the rocks was used to classify the volcanostratigraphic units based on their magnetization degree of the induced rocks. Considering the  magnetic susceptibility, there are suggested two groups of volcanic unit or Hummocks (Gumuk): Hummock of Ngebel with low susceptibility (9.9×10-3 – 20.7×10-3) and Hummock of Manyutan with medium (20.7×10-3 – 48.7×10-3) to high susceptibility (≥48.7×10-3). Noticing the reflectance spectra of Landsat-8 OLI/TIRS, it can be defined five volcanic rock units: pyroclastic fall Ngebel (reflectance value at  0.63 – 0.71), pyroclastic flows Ngebel (reflectance value at 0.71 – 0.74),  pyroclastic flow Manyutan (reflectance value at 0.74 – 0.78), lava Manyutan 1 (reflectance value at 0.78 – 0,84), and Lava Manyutan 2 (reflectance value at  ≥0.84).

Keyword: Volcanostratigraphy, Landsat-8 OLI/TIRS, magnetic susceptibility, reflectance, Ngebel

Downloads

Download data is not yet available.

References

Chavez, P.S., 1996. Image-based atmospheric corrections – revisited and improved. Photogrammetric Engineering and Remote Sensing, vol. 62, No. 9:1025-1036.

Darman, H. dan Sidi, F. H., 2000. An outline of the geology of Indonesia. Ikatan Ahli Geologi Indonesia, 192 hal., Jakarta.

Hartono, U., Baharuddin, dan Brata, K., 1992. Peta geologi lembar Madiun, Jawaskala 1:100.000, Pusat Penelitian dan Pengembangan Geologi, Direktorat Geologi, Indonesia.

Heritage Geophysics Inc., 2003. Magnetic susceptibility meter SM-30 User's Manual. Heritage Geophysics, Littleton, Colorado, hal. 1-47.

Huete, A. R., Liu, H., Batchily, K., dan van Leeuwen, W., 1997. A comparison of vegetation indices over a global set of TM images for EOS-MODIS: Remote Sens. Environ., vol. 59, no. 3, hal. 440–451.

Lee, M.D. dan Morris, W.A., 2013. Comparison of magnetic-susceptibility meters using rock samples from the Wopmay Orogen, Northwest Territories, Canada; Geological Survey of Canada, Technical Note 5, hal. 1-7, doi:10.4095/292739

Levin, N., 1999. Fundamentals of Remote Sensing: The 1st Hydrographic Data Management course, IMO - International Maritime Academy, Trieste, Italy.

Matsuda, I., 2004. River morphology and channel processes in fresh surface water, [Ed. James C.I. Dooge], Encyclopedia of Life Support Systems (EOLSS), Eolss Publishers, Oxford, UK.

Milsom, J., 2003. Field geophysics, 3rd ed. John Wiley & Sons Ltd., England. 249 hal.

MRI Energy, 2013. Survei pendahuluan potensi panas bumi gunung wilis. laporan LAPI ITB (tidak dipublikasikan).

Saepuloh A., Koike K., dan Omura M., 2012. Applying bayesian decision classification to Pi-SAR polarimetric data for detailed extraction of the geomorphologic and structural features of an active volcano. IEEE Geoscience and Remote Sensing Letters (GRSL), Vol. 99, No. 4, hal. 554-558.

Saepuloh A., Koike K., Omura M., Iguchi M., dan Setiawan A., 2010. SAR- and gravity change-based characterization of the distribution pattern of pyroclastic flow deposits at Mt. Merapi during the past ten years, Bulletin of Volcanology, vol. 72, no. 2, hal. 221-232, doi: 10.1007/s00445-009-0310-x, August 2010.

Saepuloh A., Sumintadireja A, dan Suryantini, 2004. Geologi gunung Guntur, Kabupaten Garut berdasarkan interpretasi citra ASTER, Buletin Geologi, Departmen Teknik Geologi, ITB vol. 36, no. 3, hal. 91-105.

Sribudiyani, Muchsin, N., Ryacudu, R., Kunto, T., Astono, P., Prasetya, I., Sapiie, B., Asikin, S., Harsolumakso, H.H., dan Yulianto, I., 2003. The collision of the East Java microplate and its implication for hydrocarbon occurence in the East Java basin: Proceedings of the 29th Annual Convention of Indonesian Petroleum Association (IPA), hal 1-12.

Yuwono, Y. S., 2004. Panduan pemetaan vulkanik. Laboraturium Petrologi dan Geologi Ekonomi, ITB, Bandung.

Downloads

Published

2017-11-15