Aplikasi Principle Component Analysis dan Directed Principal Component untuk Pemetaan Alterasi Hidrotermal menggunakan Citra ASTER di Kecamatan Kokap, Kulon Progo

Authors

  • Bayu Raharja Direktorat Jenderal Mineral dan Batuabara, Kementerian ESDM
  • Agung Setianto Departemen Teknik Geologi, Fakultas Teknik, Universitas Gadjah Mada
  • Anastasia Dewi Titisari Departemen Teknik Geologi, Fakultas Teknik, Universitas Gadjah Mada

DOI:

https://doi.org/10.33332/jgsm.geologi.v20i3.437

Abstract

Endapan emas di daerah Kokap, Kabupaten Kulon Progo yang berasosiasi dengan endapan tipe epitermal terbentuk akibat adanya proses alterasi hidrotermal. Pemanfaatan data penginderaan jauh untuk pemetaan alterasi telah berhasil dilakukan diberbagai lokasi. Penelitian ini bertujuan untuk mengkaji kemampuan citra ASTER saluran visible near infrared (VNIR) dan saluran shortwave infrared (SWIR) dalam memetakan jenis alterasi menggunakan metode Principle Component Analysis (PCA) dan Directed Principal Component (DPC). Klasifikasi multispektral selanjutnya dilakukan untuk membedakan tipe alterasi hidrotermal menggunakan kombinasi saluran hasil PCA dan DPC. Keberhasilan pemetaan alterasi hidrotermal dievaluasi secara statistik menggunakan confusion matrix. Tingkat akurasi yang dapat diterima adalah sebesar 85% dengan koefisien kappa lebih besar dari 0.8. Hasil penelitian menunjukkan metode DPC memiliki akurasi lebih baik dari PCA dalam memetakan tipe alterasi meskipun tingkat akurasi keduanya dibawah batas yang ditentukan. Saluran ASTER yang paling baik digunakan untuk memetakan tipe alterasi hidrotermal di lokasi penelitian adalah 1, 2, 4, dan 6.

Downloads

Download data is not yet available.

References

Abrams, M.J., Ashley, R.P., Rowan, L.C., Goetz, A.F.H. and Kahle, A.B., 1977. Mapping of hydrothermal alteration in the Cuprite mining district, Nevada, using aircraft scanner images for spectral region 0.46-2.36 mm. Geology, vol. 5, pp. 713-718.

Anderson, J.R., Hardy, E.E., Roach, J.T. and Witner, R.E., 1976. A land use and land cover classification system for use with remote sensor data. USGS Professional Paper 964.

Bastianelli, L., Bela, G. D., and Tarsi, L., 1993, Alteration mapping: a case study in mid-south Bolivia. Proceedings of the 9th Thematic Conference on Geologic Remote Sensing, Pasadena, CA (Ann Arbor, MI: Environmental Research Institute of Michigan), pp. 1133–1144.

Bedell, R.L., 2001. Geological mapping with ASTER satellite: new global satellite data that is a significant leap in remote sensing geologic and alteration mapping, Special Publication, vol. 33. Geo. Soc. of Nevada, pp. 329–334.

Bishop, M.M., Feinberg, S.E. and Holland, P.W., 1975. Discrete Multivariate Analysis:Theory and Practice. MIT Press, Cambridge, Massachusetts, 587 pp.

Carranza, E.J.M., 2002. Geologically- constrained Mineral Potential Mapping, PhD Thesis, Delft University of Technology, The Netherlands, 480p

Carranza, E.J.M. and Hale, M., 2002. Mineral imaging with Landsat Thematic Mapper data for hydrothermal alteration mapping in heavily vegetated terrane, International Journal of Remote Sensing, 23, 4827ï¼4852.

Cohen, J., 1960. A coefficient of agreement for nominal scales. Education and Psychological Measurement, vol. 20, pp. 37-45.

Congalton, R.G. and Green, K., 1999. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Lewis Publishers, Boca Raton, FL, 137 pp.

Crosta, A.P., Souza Filho, C.R., Azevedo, F. and Brodie, C., 2003. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, Using ASTER imagery and principal component analysis, International Journal of Remote sensing, 24, PP. 4233-4240.

Danoedoro, P., 2012. Pengantar Penginderaan Jauh Digital, Yogyakarta: Universitas Gadjah Mada

Davidson, D., Bruce, B., dan Jones, D., 1993. Operational remote sensing mineral exploration in a semi-arid environment: the Troodos Massif,

Cyprus. Proceedings of the 9th Thematic Conference on Remote Sensing for Exploration Geology, Pasadena, CA (Ann Arbor, MI: Environmental Research Institute of Michigan), pp. 845–859.

Fraser, S.J. and Green, A.A., 1987. A software defoliant for geological analysis of band ratios, International Journal of Remote Sensing, vol. 8, no. 3, pp. 525-532.

Gasmi, A., Gomez, C., Zouari, H., Masse, A., Ducrot, D., 2016. PCA and SVM as geo-computational methods for geological mapping in the southern of Tunisia, using ASTER remote sensing data set. Arabian Journal of Geoscience, vol 9:753

Harjanto, A., 2008. Magmatisme dan mineralisasi di daerah Kulon Progo dan sekitarnya Jawa Tengah. Disertasi Doktor. Institut Teknologi Bandung. Bandung

Kalinowski, A. and Oliver, S., 2004. Aster Mineral Index Processing. Manual. Remote Sensing Application Geosciense, 36.

Landis, J. and Koch, G., 1977. The measurement of observer agreement for categorical data. Biometrics, vol. 33, pp. 159-174.

Lehmann, E.L. and G. Casella, 1998. Theory of Point Estimation, 2nd Edition, New York: Springer.

Livo, K. E., Clarck, R. N. and Knepper, D. H., 1993. Spectral plot program for accessing the USGS digital spectral library database with MS–DOS personal computers. USGS Open–file. Denver, Colorado, Report No.93, 593p.

Murti SH, Wicaksono P. 2014. Analisis saluran spektral yang paling berpengaruh dalam identifikasi kesehatan terumbu karang: studi kasus pulau Menjangan Besar dan Menjangan Kecil Kepulauan Karimunjawa. Majalah Ilmiah Globe. 16 (2) : 117-224.

Nugraha, O. R., 2015. Geologi dan alterasi hidrotermal di daerah Sangon dan Plampang, Kecamatan Kokap, Kabupaten Kulonprogo, DIY. Skripsi. Teknik Geologi, Universitas Gadjah Mada. Yogyakarta (Tidak dipublikasikan).

Pambudi, D., 2017. Geologi dan mineralisasi logam daerah Sangon, Kokap, Kulon Progo, Yogyakarta, Skripsi., Universitas Diponegoro., Semarang (Tidak dipublikasikan).

Pramumijoyo, P., 2017. Geologi, geokimia, dan karakteristik fluida hidrotermal pada endapan epithermal sulfidasi rendah di daerah Sangon, Kokap, DIY. Tesis. Teknik Geologi, Universitas Gadjah Mada. Yogyakarta (Tidak dipublikasikan).

Rahardjo, W., Sukandarrumidi, & Rosidi, H.M.D., 1995. Peta Geologi Lembar Yogyakarta, Jawa, Pusat Penelitian dan Pengembangan Geologi, Bandung.

Richards, J.A., 1999. Remote Sensing Digital Image Analysis, An Introduction, 3rd Ed.,. Springer-Verlag, Berlin, 363 pp.

Ruiz-Armenta, J. R., and Prol-Ledesma, R. M., 1998. Techniques for enhancing the spectral response of hydrothermal alteration minerals in Thematic Mapper images of Central Mexico. International Journal of Remote Sensing, 19, 1981–2000.

Setijadji, L.D., Kajino, S., Imai, A., and Watanabe, K., 2006. Cenozoic Island Arc Magmatism in Java Island (Sunda Arc, Indonesia): Clues on Relationships between Geodynamics of Volcanic Centers and Ore Mineralization, Resource Geology 56 (3), 267-292.

Setijadji, L.D., Maryono, A., 2012. Geology and Arc Magmatism of the Eastern Sunda Arc, Indonesia, Proceeding of Banda and Eastern Sunda Arc 2012 MGEI annual convention, pp. 1–22

Smith, R.B., 2005. Outline of Principle Component Analysis, Site: http://www.yale.edu/ceo/ Documentation/PCA_Outline.pdf. Diakses pada 20 Agustus 2018.

Souza Filho, C. R., and Drury, S. A., 1998. Evaluation of JERS-1 (FUYO-1) OPS and Landsat TM images for mapping of gneissic rocks in arid areas. International Journal of Remote Sensing, 19, 3569–3594.

Sulthoni, J.N., 2017. Geologi dan kontrol struktur terhadap mineralisasi epithermal berdasarkan analisis tensor dan geokimia di Gunung Ijo dan sekitarnya, Pegunungan Kulonprogo, DIY. Skripsi. Teknik Geologi, Universitas Jenderal Soedirman. Purwokerto (Tidak dipublikasikan).

Tangestani, M. H., and Moore, F., 2002. Porphyry copper alteration mapping at the Meiduk area, Iran. International Journal of Remote Sensing, 23, 4815–4826.

Taranik, J.V. and Crósta, A.P., 1996. Remote sensing for geological and mineral resources, an assessment of tools for geoscientists in the future. International Archives of Photogrammetry and Remote Sensing, vol. 31, B7, pp. 689-698.

Van Bemmelen, R.W., 1949. The Geology of Indonesia, The Hagu, Belanda.

Vermote, E.F., El Saleous, N.Z., Justice, C.O., 2002. Atmospheric Correction of MODIS data in Visible to Middle infrared: First Result, Remote Sensing of Environment, Vol. 83 (97 – 111).

Wicaksono, P. & Danoedoro, P., 2012. Multitemporal Vegetation Cover Mapping using ALOS AVNIR-2: The Important of Atmospheric Effect Normalization on Multitemporal Analysis. Report and Proceedings of ALOS Application and Verification Project in Indonesia. Jakarta: JAXA & LAPAN.

Yamaguchi, Y., Naito, C., 2003. Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands. International Journal of Remote Sensing 24 (22), 4311–4323.

Downloads

Published

2019-06-13