Plagioclase Fractionation On The Holocene Volcanic Rocks Evolution In West Halmahera Regency

Authors

  • Ipranta Ipranta
  • Ronaldo Irzon

DOI:

https://doi.org/10.33332/jgsm.geologi.v20i3.468

Abstract

The tectonic complexity in the Maluku region is caused by the interaction of the three main platesin this area, namely: the Philippine Plate, the Australian Plate, and the Eurasian Plate. The origin of volcanic rock-forming material from Jailolo Mount., Sahu Mount., Gamkonora Mount., and Ibu Mount. in West Halmahera Regency is the aim of this study. Petrographic, trace elements, rare earth elements analysis are also used to study rock formation processes and correlations between sample groups. Bipolar microscope and Inductively Coupled Plasma - Mass Spectrometry of the Center for Geological Survey Laboratory are the analytical devices used in this study. Almost all samples are classified as andesite based on the comparison of the quartz, K-feldspar, and plagioclase compositions. There is a possibility of mixing between oceanic crust and continental crust of the studied Holocene volcanic which is indicated by La/Yb versus Nb/La diagrams. Fractional crystallization is considered more influential in rock formation compared to partial melting. The effect of plagioclase fractionation on the four volcanic rock groups is shown by the Y versus Sr/Y diagram and rare earth spider diagram patterns. Increased levels of rare earths in samples from G. Gamkonora and G. Sahu are strongly influenced by crystallization of plagioclase during rock formation.

Key words: volcanic rocks, petrography, geochemistry, West Halmahera

Downloads

Download data is not yet available.

References

Agrawal, S., Guevara, M., & Verma, S. P., 2008. Tectonic discrimination of basic and ultrabasic volcanic rocks through log-transformed ratios of immobile trace elements. International Geology Review, v.50(12): 1057-1079.

Bader, A. G., Pubellier, M., Rangin, C., Deplus, C., &Louat, R., 1999. Active slivering of oceanic crust along the Molucca ridge (Indonesiaâ€Philippine): Implication for ophiolite incorporation in a subduction wedge?. Tectonics, v.18(4): 606-620.

Baker, S., & Malaihollo, J., 1996. Dating of Neogene igneous rocks in the Halmahera region: arc initiation and development. Geological Society, London, Special Publications, v.106(1): 499-509.

Boynton, W. V., 1984. Cosmochemistry of the rare earth elements: meteorite studies. In Developments in geochemistry, v.2: 63-114.

Castillo, P. R., 2006. An overview of adakite petrogenesis. Chinese Science Bulletin, v.51(3): 257-268.

Castillo, P. R., 2012. Adakite petrogenesis. Lithos, v.134: 304-316.

Defant, M. J., & Drummond, M. S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, v.347(6294).

Defant, M.J., & Drummond, M.S., 1993. Mount St. Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology, v.21: 541–550

Evans, C. A., Hawkins, J. W., & Moore, G. F., 1983. Petrology and geochemistry of ophiolitic and associated volcanic rocks on the Talaud Islands, Molucca Sea Collision Zone, northeast Indonesia. Geodynamics of the Western Pacificâ€Indonesian Region, v.11: 159-172.

Fadlin, F., Godang, S., & Hamzah, W. N., 2018. Magmatisme Tholeitik pada Active Continental Margin (ACM) di Serayu Bagian Utara dan Selatan–Banyumas, Jawa Tengah. Jurnal Geologi dan Sumberdaya Mineral, v.19(1): 15-30.

Fan, W. M., Guo, F., Wang, Y. J., Lin, G., & Zhang, M., 2001. Post-orogenic bimodal volcanism along the Sulu orogenic belt in eastern China. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, v.26(9-10): 733-746.

Gemmell, J. B., 2007. Hydrothermal alteration associated with the Gosowong epithermal Au-Ag deposit, Halmahera, Indonesia: Mineralogy, geochemistry, and exploration implications. Economic Geology, v.102(5): 893-922.

Hakim, A. S., & Hall, R., 1991. Tertiary volcanic rocks from the Halmahera Arc, eastern Indonesia. Journal of Southeast Asian Earth Sciences, v.6(3-4), 271-287.

Hall, R., 1987. Plate boundary evolution in the Halmahera region, Indonesia. Tectonophysics, v.144(4): 337-352.

Hall, R., Audley-Charles, M. G., Banner, F. T., Hidayat, S., &Tobing, S. L., 1988. Basement rocks of the Halmahera region, eastern Indonesia: a Late Cretaceous–early Tertiary arc and fore-arc. Journal of the Geological Society, v.145(1): 65-84.

Hall, R., Nichols, G., Ballantyne, P., Charlton, T., & Ali, J., 1991. The character and significance of basement rocks of the southern Molucca Sea region. Journal of Southeast Asian Earth Sciences, v.6(3-4): 249-258.

Hamilton, W. B., 1979. Tectonics of the Indonesian region (No. 1078). US Govt. Print. Off.

Hartono, U., & Suyono, S., 2006. Identification of Adakite from The Sintang Intrusives In West Kalimantan. Jurnal Geologi dan Sumberdaya Mineral, v.16(3): 173-178.

Hase, T., Yonezu, K., Tindell, T., Syafrizal,& Watanabe, K., 2015. Mineralization Characteristics of the Kencana deposit, Gosowong mining area, Halmahera, Indonesia. The 2nd International Conference and 1st Joint Conference of Faculty Geology Universitas Padjadjaran with Faculty of Science and Natural Resources University Malaysia Sabah: 205 – 2012.

Hollocher, K., Robinson, P., Walsh, E., & Roberts, D., 2012. Geochemistry of amphibolite-facies volcanics and gabbros of the Støren Nappe in extensions west and southwest of Trondheim, Western Gneiss Region, Norway: a key to correlations and paleotectonic settings. American Journal of Science, v.312(4): 357-416.

Irzon, R., & Abdullah, B., 2016. Geochemistry of Ophiolite Complex in North Konawe, Southeast Sulawesi. Eksplorium: Buletin Pusat Teknologi Bahan Galian Nuklir, v.37(2): 101-114.

Irzon, R., Syafri, I., Hutabarat, J., & Sendjaja, P., 2016. REE Comparison Between Muncung Granite Samples and their Weathering Products, Lingga Regency, Riau Islands. Indonesian Journal on Geoscience, v.3(3): 149-161.

Irzon, R., 2017. Geochemistry of Late Triassic weak Peraluminous A-Type Karimun Granite, Karimun Regency, Riau Islands Province. Indonesian Journal on Geoscience, v.4(1): 21-37.

Irzon, R., 2018. Komposisi Kimia Pasir Pantai di Selatan Kulonprogo dan Implikasi terhadap Provenance. Jurnal Geologi dan Sumberdaya Mineral, v.19(1): 31-45.

Katili, J. A., 1978. Past and present geotectonic position of Sulawesi, Indonesia. Tectonophysics, v.45(4): 289-322.

Kolb, M., Von Quadt, A., Peytcheva, I., Heinrich, C. A., Fowler, S. J., & Cvetković, V., 2012. Adakite-like and normal arc magmas: distinct fractionation paths in the East Serbian segment of the Balkan–Carpathian arc. Journal of Petrology, v.54(3): 421-451.

Ma, Q., Zheng, J. P., Xu, Y. G., Griffin, W. L., & Zhang, R. S., 2015. Are continental “adakites†derived from thickened or foundered lower crust?. Earth and Planetary Science Letters, v.419: 125-133.

McCaffrey, R., Silver, E. A., &Raitt, R. W., 1980. Crustal structure of the Molucca Sea collision zone, Indonesia. In The tectonic and geologic evolution of Southeast Asian seas and islands, v.23: 161-177). Washington, DC: AGU.

Meschede, M., 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical geology, v.56(3-4): 207-218.

Morris, J. D., Jezek, P. A., Hart, S. R., & Hill, J. B., 1983. The Halmahera island arc, Molucca Sea collision zone, Indonesia: a geochemical survey. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2: 373-387.

Mullen, E. D., 1983. MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters, v.62(1): 53-62.

Pearce, J. A., & Cann, J. R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and planetary science letters, v.19(2): 290-300.

Pearce, T. H., Gorman, B. E., & Birkett, T. C., 1977. The relationship between major element chemistry and tectonic environment of basic and intermediate volcanic rocks. Earth and Planetary Science Letters, v.36(1): 121-132.

Richards, J., & Kerrich, R., 2007. Special paper: Adakite-like rocks: their diverse origins and questionable role in metallogenesis. Economic Geology, v.102: 1–40.

Sajona, F.G., Maury, R.C., Bellon, H., Cotten, J., Defant, M.J., Pubellier, M., & Rangin, C., 1993. Initiation of subduction and the generation of slabmelts in western and east-ern Mindanao, Philippines. Geology, v.21: 1007–1010.

Setyanta, B., & Setiadi, I., 2011. Model Struktur Subduksi Kerak di Perairan Laut Maluku dan Vulkanisme berdasarkan Analisis Gaya Berat dan Kegempaan. Jurnal Geologi dan Sumberdaya Mineral, v.21(4): 213-223.

Streckeisen, A., 1978. IUGS Subcommission on the Systematics of Igneous Rocks. Classification and Nomenclature of Volcanic Rocks, Lamprophyres, Carbonatites and Melilite Rocks. Recommendations and Suggestions. Neues Jahrbuch fur Mineralogie. Stuttgart. Abhandlungen, v.143: 1-14.

Supriatna, S., 1980. Geologic map of the Morotai quadrangle, North Maluku. Geological Research and Development Centre, Bandung, Indonesia.

Verma, S. P., Guevara, M., & Agrawal, S., 2006. Discriminating four tectonic settings: Five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log—ratio transformation of major-element data. Journal of Earth System Science, v.115(5): 485-528.

Wang, X., Gao, S., Liu, X., Yuan, H., Hu, Z., Zhang, H., & Wang, X., 2006. Geochemistry of high-Mg andesites from the early Cretaceous Yixian Formation, western Liaoning: Implications for lower crustal delamination and Sr/Y variations. Science in China Series D: Earth Science

Downloads

Published

2019-08-08