Chemostratigraphy and Paleoenvironment of the Miocene Organic Rich Sediments in the East Kutai Sub-Basin, Indonesia

Authors

  • Asep Kurnia Permana Batubara dan Hidrokarbon Non Konvensional
  • Aris Kusworo
  • Joko Wahyudiono
  • Y A. Sendjaja
  • Hermes Panggabean
  • L Fauziely

DOI:

https://doi.org/10.33332/jgsm.geologi.v23i1.660

Abstract

The Miocene sedimentary rocks in Samarinda area constrains organic rich sediments, which are considered as a good source rocks hydrocarbon in the East Kutai Sub-Basin, Kalimantan. The high organic material content within the sediments is related to the dynamics of depositional environment in deltaic setting. The accumulation and characteristics of organic matter in this area may be influenced by multiple factors, under a complex physical-chemical processes. Geochemical data of major and trace elements obtained for a total 309 outcrop samples from four locations were interpreted to define chemostratigraphic and paleoenvironmental conditions (paleoproductivity, detrital influx, paleoredox and paleosalinity) responsible for organic carbon accumulation and source rocks characterization. Stratigraphic variation in inorganic geochemistry allows two chemostratigraphic packages to be defined and correlated within the Miocene sedimentary sequences. These chemostratigraphic packages are geochemically differentiated using SiO2/Al2O3, TiO2/Al2O3, Na2O/Al2O3, TiO2/Nb and Sr/Ba ratio values. The chemical alteration index (CIA) suggests that the sedimentary unit was deposited in a hot and humid climate, with moderate to intensive weathering intensity. Detrital material input proxies (Si/Al, Ti/Al) indicate that the low Si/Al and Ti/Al ratios reflect a low material input providing an increasing organic matter accumulation in the Middle Miocene. However, paleoproductivity proxies (P/Ti, Ba/Al) show the organic matter enrichment is not restrained by water column productivity, as indicated by a weak correlation between TOC and productivity index. In addition, paleosalinity index (Sr/Ba) and redox indicators (V/Cr, V/Sc U/Th and Mo/Al) indicate that the sediments were deposited in a brackish environment with dysoxic to suboxic conditions and might be the main control in the enrichment of organic matter in the study area. Thus, the detrital material influx and paleoredox conditions controlled organic accumulation and source characteristics the Miocene sedimentary sequence of the Kutai Basin.

Keywords: Chemostratigraphy, Kutai Basin, paleoenvironment, source rocks.

Downloads

Download data is not yet available.

Author Biography

Asep Kurnia Permana, Batubara dan Hidrokarbon Non Konvensional

References

Ahmad, Z. and Samuel, L., 1984. Stratigraphy and Depositional Cycles in the N.E. Kalimantan Basin. Indonesian Petroleum Association Proceedings 13th Annual Convention, pp. 109–120.

Algeo, T.J. and Maynard, J.B., 2004. Traceâ€Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansasâ€type Cyclothems. Chemical Geology, 206(3–4): 289-318.

Algeo, T.J. and Lyons, T.W., 2006. Total Organic Carbon Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Paleohydrographic Conditions. Paleoceanography, 21.

Algeo, T.J., Kuwahara, K., Sano, H., Bates, S., Lyons, T., Elswick, E., Hinnov, L., Ellwod, B., Moser, J., Maynard, J.B., 2011. Spatial Variation in Sediment Fluxes, Redox Conditions, and Productivity in the Permian-Triassic Panthalassic Ocean. Paleogeogr. Paleoclimatol. Palaeoecol., 308: 65-85.

Algeo, T.J. and Rowe, H., 2012. Paleoceanographic Applications of Trace Metal Concentration Data. Chemical Geology, 324: 6-18.

Allen, G.P., Laurier, D., and Thouvenin, J., 1976. Sediment Distribution Patterns in the Modern Mahakam Delta. Proceedings Indonesian Petroleum Association, 5: 159-178.

Arthur, M.A. and and Sageman, B.B., 1994. Marine Black Shales: Depositional Mechanisms And Environments of Ancient Deposits. Annual Review of Earth and Planetary Sciences, 22: 499-551.

Bachtiar, A., 2004. Kerangka Stratigrafi Sikuen dan karakter batuan induk Miosen Awal di Cekungan Kutai Hilir, Kalimantan Timur. Disertasi, Institut Teknologi Bandung, 259 h.

Bachtiar, A., Heru, D.W., Azzaino, Z., Utomo, W., Krisyunianto, A., and Sani, M., 2013. Surface Data Re-Evaluation, Eocene Source Rock Potential and Hydrocarbon Seepage, and Eocene Sand Reservoir Prospectivity In West Sangatta, Northern Kutai Basin. Proceedings of the Indonesian Petroleum Association, 37th Annual Convention and Exhibition, paper IPA13-G-087, 10 p.

Bechtel, A., Jia, J.L., Strobl, S.A.I., Sachsenhofer, R.F., Liu, Z.J., Gratzer, R., and Püttmann, W., 2012. Paleoenvironmental Conditions During Deposition of the Upper Cretaceous Oil Shale Sequences in the Songliao Basin (NE China): Implications from Geochemical Analyses. Org. Geochem., 46: 76-95.

Bohacs, K.M., Grabowski, G.J., Carroll, A.R., Mankiewicz, P.J., Gerhardt, K.J., Schwalbach, J.R., Wegner, M.B., Simo, J.A., 2005. Production, Destruction, and Dilution the Many Paths to Source Rock Development. In Harris, N.B. (ed.), The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanism, and Consequences. Society of Economic Paleontologist and Mineralogist Special Publication, 82: 61-101.

Calvert, S.E. and Pederson, T.F., 2007. Elemental Proxies for Palaeclimatic and Palaeoceanographic Variability in Marine Sediments: Interpretation and Application. Developments in Marine Geology, 1: 567-664.

Chen, C., Mu, C.L., Zhou, K.K., Liang, W., Ge, X.Y., Wang, X.P., Zheng, B.S., 2016. The Geochemical Characteristics and actor Controlling the Organic Matter Accumulation of the Late Ordovician - Early Silurian Black Shale in the Upper Yangtze Basin, South China. Marine Petroleum Geology, 76: 159-175.

Creaney, S. and Passey, Q.R., 1993. Recurring Patterns of Total Organic Carbon and Source Rock Quality Within a Sequence Stratigraphic Framework. American Association of Petroleum Geologists Bulletin, 77: 386-401.

Demaison, G.J. and Moore, G.T., 1980. Anoxic Environments and Oil Source Bed Genesis. American Association of Petroleum Geologists Bulletin, 64: 1179-1209.

Dean, W.E., Gardner, J.V., and Piper, D.Z., 1997. Inorganic Geochemical Indicators of Glacial Interglacial Changes in Productivity and Anoxia on the California Continental Margin. Geochimica Cosmochimica Acta, 61(22): 4507-4518.

Englund, J.O. and Jørgensen, D.P., 1973. A Chemical Classification System for Argillaceous Sediments and Fact or Affecting Their Composition. Geologiska Föreningens i Stockholm Förhandlingar, 95(1): 87-97.

Kennedy, M.J., Pevear, D.R., and Hill, R.J., 2002. Mineral Surface Control of Organic Carbon in Black Shale. Science, 295: 657-660.

Kidder, D.I. and Erwin, D.H., 2001. Secular Distribution of Biogenic Silica Trough the Phanerozoic: Comparison of Silica-Replaced Fossil and Bedded Cherts at the Series Level. Journal of Geology, 109: 509-522.

Kimura, H. and Watanabe, Y., 2001. Oceanic Anoxia at the Precambrianâ€Cambrian Boudary. Geology, 29(11): 995-998.

Lash, G.G. and Blood, D.R., 2014. Organic Matter Accumulation, Redox, and Diagenetic History of Marcellus Formation, Southwestern Pennsylvania, Appalachian Basin. Marine of Petroleum Geology, 57: 244-26.

Mayer, L.M., 1994. Surface Area Control of Organic Carbon Accumulation in Continental Shelf Sediments. Geochim. Cosmochim. Acta, 58: 1271-1284.

Moss, S.J., Chambers, J., Cloke, I., Satria, D., Ali, J.R., Baker, S., Milsom, J., and Carter, A., 1997. New Observations on the Sedimentary and Tectonic Evolution of the Tertiary Kutai Basin, East Kalimantan, in A.J. Fraser, S.J. Matthews, and R.W. Murphy (eds), Petroleum Geology of Southeast Asia. Geological Society Special Publication, 126: 395-416.

Mort, H., Jacquat, O., Adatte, T., Steinmann, P., Föllmi, K., Matera, V., Berner, Z., and Stüben, D., 2007. The Cenomanian/Turonian Anoxic Event at the Bonarelli Level in Italy and Spain: Enhanced Productivity and/or Better Preservation?. Cretaceous Research, 28: 597-612. https://doi.org./10.1016/j.cretres.2006.09.003.

Murphy, A.E., Sageman, B.B., Hollander, D.J., Lyons, T.W., and Brett, C.E., 2000. Black Shale Deposition and Faunal Overturn in the Devonian Appalachian Basin: Starvation, Seasonal Water-Column Mixing, and Efficient Biolimiting Clastic Nutrient Recycling. Paleogeography, 15: 280-291.

Nesbitt, H.W. and Young, G.M., 1989. Formation and Diagenesis of Weathering Proï¬les. Journal of Geology, 97: 129-147.

Payton, A. and Griffith, E.M., 2007. Marine Barite: Recorder of Variations in Ocean Export Productivity, Deep Sea Resources, Part II. Study of Oceanography, 54 (5-7): 687-705.

Pedersen, T.F. and Calvert, S.E., 1990, Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks? American Association of Petroleum Geologists Bulletin, 74: 454-466.

Permana, A,K., Sendjadja, Y.A., Panggabean, H., and Fauxely, L., 2018. Depositional Environment and Source Rocks Potential of the Miocene Organic-Rich Sediments, Balikpapan Formation, East Kutai Sub-Basin, Kalimantan. Journal of Geology and Mineral Resources, 9(3): 171-186.

Peters, K.E., Snedden, J.W., Sulaeman, A., Sarg, J.F., and Enrico, R.J., 1999. New Deepwater Geochemical Model for the Mahakam Delta and Makassar Slope, Kalimantan. Proceedings of the Indonesian Petroleum Association, 27th Annual Convention and Exhibition, paper IPA99-G-094, 12 p.

Rimmer, S.M., 2004. Geochemical Paleoredox Indicators in Devonian Mississippian Black Shales, Central Appalachian Basin (USA). Chemical Geology, 206(3-4): 373-391.

Sageman, B.B., Murphy, A.E., Werne, J.P., Ver Straeten, C.A., Hollander, D.J., and Lyons, T.W., 2003. A Tale of Shales: The Relative Roles of Production, Decomposition, and Dilution in the Accumulation of Organic-Rich Strata, Middle–Upper Devonian, Appalachian Basin. Chemical Geology, 195: 229-273.

Shu, T., Dazhen, T., Hao, X., Jianlong, L., and Xuefeng, S., 2013. Organic Geochemistry and Elements Distribution in Dahuangshan Oil Shale, Southern Junggar Basin: Origin of Organic Matter and Depositional Environment. Int. J. Coal Geol., 115: 41-51.

Supriatna, S. and Rustandi, E., 1986. Geological Map of the Samarinda Quadrangle, Kalimantan, Scale 1:250.000. Geological Research and Development Centre, Indonesia.

Taylor, S.R. and McClennan, S.M., 1985. The Continental Crust: Iits Composition and Evolution. Blackwell Scientiï¬c Publications, Oxford.

Tribovillard, N., Algeo, T.J., Lyons, T., and Riboulleau, A., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32.

Tribovillard, N.P., Desprairies, A., Lallier-Vergès, E., Bertrand, P., Moureau, N., Moureau, N., Ramdani, A., and Ramanampisoa, L., 1994. Geochemical Study of Organic-Matter Rich Cycles from the Kimmeridge Clay Formation of Yorkshire (UK): Productivity Versus Anoxia. Palaeogeogr. Palaeoclimatol. Palaeoecol., 108: 165-181.

Tyson, R.V., 2001. Sedimentation Rate, Dilution, Preservation, and Total Organic Carbon: Some Results of a Modeling Study. Organic Geochemistry, 32: 333-339.

Tyson, R.V., 2005. The Productivity versus Preservation Controversy: Cause, Faws, and Resolution, in Harris, N.B. (ed.), The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences. Society for Sedimentary Geology (SEPM) Special Publication, 82: 17-33.

Van de Weerd, A. and Armin, R.A., 1992. Origin and Evolution of the Tertiary hydrocarbon-bearing Basins in Kalimantan (Borneo), Indonesia. AAPG Bulletin, 76: 1778-1803.

Wei, H.Y., Chen, D.Z., Wang, J.G., Yu, H., and Tucker, M.E., 2012. Organic Accumulation in the Lower Chihsia Formation (Middle Permian) of South China: Constraints from Pyrite Morphology and Multiple Geochemical Proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 353: 73-86.

Wei, W. and Algeo, T.J., 2019. Elemental Proxies for Paleosalinity Analysis of Ancient Shales and Mudrocks. Geochimica Cosmochimica Acta (In Press), https://doi.org/10.1016/j.gca.2019.06.034.

Zeng, S.Q., Wang, J., Fu, X.G., Chen, W.B., Feng, X.L., Wang, D., Song, C.Y., and Wang, Z.W., 2015. Geochemical Characteristics, Redox Conditions, and Organic Matter Accumulation of Marine Oil Shale from the Changliang Mountain Area, Northern Tibet, China. Marine Petroleum Geology, 64: 203-221.

Zonneveld, K.A.F., Versteegh, G.J.M., Kasten, S., Eglinton, T.I., Emeis, K.C., Huguet, C., Koch, B.P., de Lange, G.J., de Leeuw, J.W., Middelburg, J.J., Mollenhauer, G., Prahl, F.G., Rethemeyer, J., and Wakeham, S.G., 2010. Selective Preservation of Organic Matter in Marine Environments: Processes and Impact on the Sedimentary Record. Biogeosciences, 7: 483-511 .

Downloads

Published

2022-02-08