Prediksi Model 2d Data Magnetotelurik Terbaik Berdasarkan Pendekatan Model Irisan Di Cekungan Tomori dan Sekitarnya


  • Gusti Muhammad Lucki Junursyah Pusat Survei Geologi
  • Dimas Bagus Maulana Universitas Padjadjaran
  • Randi Rusdiana Universitas Padjadjaran



2D modeling of magnetotelluric data produce various models that are influenced by noise and differences in coordinate measurement systems with strike directions, so the results are inaccurate. A technique that can be done to identify the accuracy of the data is the rotation analysis based on the overlay model approach. The type of rotation used are strike angle and fix angle. The strike angle rotation is done by maximizing the anti-diagonal impedance value, while the rotation fix angle refers to the isotropic homogeneous earth model by eliminating the static effect on the surface. The overlay model approach is based on the assumption that the distribution of resistivity variations of the rock in the subsurface has same value in various models. 2D modeling used in this analysis consists of three trajectories of correlation results from 30 magnetotelluric measurement points in the Tomori and surrounding areas. The results of the analysis show that the strike angle rotation model is the best model that can be used in the study area with the approach of determination value reaches 0.7735, therefore it can reduce subsurface geological interpretation deviation based on various 2D models.

Keywords: Magnetotelluric, impedance rotation, strike angle rotation, fix angle rotation


Download data is not yet available.


Berdichevsky, M.N. and Dmitriev, V.I., 2008. Models and Methods of Magnetotellurics. Springer, Verlag Berlin Heidelberg: 559.

Jones, A.G. and Groom, R.W., 1993. Strike-Angle Determination from the Magnetotelluric Impedance Tensor in the Presence of Noise and Local Distortion: Rotate at Your Peril!. Geophysical Journal International, 113: 524-534.

Junursyah, G.M.L., 2014. Laporan Akhir Kegiatan Survei Magnetotelurik di Daerah Cekungan Tomori dan Sekitarnya Provinsi Sulawesi Tengah. Laporan internal Pusat Survei Geologi, Bandung (tidak terbit).

Khyzhnyak, M., 2014. Geoelectric Strike and Its Application in Magnetotellurics. Faculty of Earth Science, University of Iceland, Reykjavik: 31.

Lowrie, W., 2007. Fundamental of Geophysics. Cambridge University Press, New York, 362p.

Mardiana, U., 2007. Laporan Penelitian Manifestasi Panasbumi Berdasarkan Tahanan Jenis Batuan, Studi Kasus Gunung Papandayan Kabupaten Garut, Provinsi Jawa Barat. Laporan internal Universitas Padjadjaran, Bandung (tidak terbit).

Marti, A., Queralt, P. and Roca, E., 2004. Geoelectric Dimensionality in Complex Geological Areas: Application to the Spanish Betic Chain. Geophysical Journal International, 157: 961-974.

Ranganayaki, R.P., 1984. An Interpretive Analysis of Magnetotelluric Data. Geophysics, 49: 1730-1748.

Simandjuntak, T.O., Rusmana, E., Surono dan Supandjono J.B., 1991(a). Geologi Lembar Malili, Sulawesi, Skala 1:250.000. Pusat Penelitian dan Pengembangan Geologi, Bandung.

Simandjuntak, T.O., Surono dan Supandjono, J.B., 1991(b). Geologi Lembar Poso, Sulawesi, Skala 1:250.000. Pusat Penelitian dan Pengembangan Geologi, Bandung.

Simandjuntak, T.O., Rusmana, E. dan Supandjono, J.B., 1994. Geologi Lembar Bungku, Sulawesi, Skala 1:250.000. Pusat Penelitian dan Pengembangan Geologi, Bandung.

Surono, Simandjuntak, T.O., Situmorang, R.L., dan Sukido. 1994. Geologi Lembar Batui, Sulawesi, Skala 250.000. Pusat Penelitian dan Pengembangan Geologi, Bandung.

Szarka, L. and Menvielle, M., 1997. Analysis of Rotational Invariants of the Magnetotelluric Impedance Tensor. Geophysical Journal International, 129: 133-142.

Surono dan Hartono, U. (eds.), 2013. Geologi Sulawesi. LIPI Press, Bandung: 279-280h.

Vozoff, K., 1991. The Magnetotelluric Method. In: Nabighian M.N. (eds.), Electromagnetic Methods in Applied Geophysics. Society of Exploration Geophysicists, Tulsa: 641-711.

Weaver, J.T., Agarwal, A.K. and Lilley F.E.M., 2002. Characterization of the Magnetotelluric Tensor in Terms of Its Invariants. Geophysical Journal International, 141: 321-336.