Investigasi Pendugaan Gerakan Tanah Menggunakan Metode Electrical Resistivity Tomography dan Self Potential di Daerah Pasanggrahan Baru, Sumedang Selatan

Budy Santoso, Subagio Subagio, Mia Uswatun Hasanah, Hilman Suwarga


Land movement occur because of the movement of slope-forming material such as of soil, rock or a combination of material types to a place that is lower due to the influence of gravity. The movement of slope material can be identified by the Electrical Resistivity Tomography (ERT) Method, because this method has good lateral and vertical resolution based on rock resistivity data. The trigger factors for land movement in Anjung Village, Pasanggrahan Baru, South Sumedang, among others: an increase in water content on the slopes and the slip plane. Increased water content is influenced by infiltration of rainwater as one of the triggers of land movement,  can be detected by the Self Potential method (SP), while the slip plane can be detected by the method of Electrical Resistivity Tomography (ERT). Based on the results of the ERT and SP measurements, the results are: debris flow as a landslide plane (resistivity values: 31 – 170 Ohm.m and SP values: 5 – 13 mV), water table/water saturated layer (resistivity values: 1 – 13 Ohm.m and SP values: 14 – 34 mV), and breccias (resistivity values: 400 - 900 Ohm.m and SP values: 1-3 mV).Slip plane are estimated to be at boundary between the breccia and the material on it.

Keywords: Land movement, resistivity, self potential, South Sumedang

Full Text:



Anonim, 2008. Peta Zona Kerentanan Gerakan Tanah Kab. Sumedang, Prov. Jawa Barat. Pusat Vulkanologi Mitigasi Bencana Geologi.

Anonim, 2016a. 4 Orang Tewas Tertimbun Longsor di Sumedang. Melalui [20/11/18]

Anonim, 2016b. Pusat Vulkanologi Mitigasi Bencana Geologi: Laporan Singkat Pemeriksaan Gerakan Tanah Di Kecamatan Sumedang Selatan Kabupaten Sumedang Provinsi Jawa Barat. Melalui [20/11/18]

Bell, R., Petschko, Röhrs, M.R., and Dix, A., 2012. Assessment of Landslide Age, Landslide Persistence and Human Impact Using Airborne 4. Laser Scanning Digital Terrain Models. Geografiska Annaler: Series A Physical Geography, 94 (1): 135-156.

Bordoni, M., Meisina, C., Valentino, R., Lu, N., Bittelli, M., and Chersich, S., 2015. Hydrological Factors Affecting Rainfall-Induced Shallow Landslides : From the Field Monitoring to a Simplified Slope Stability Analysis. Journal of Engineering Geology,193: 19-37.

Colangelo, G., Lapenna, V., Perrone, A., Piscitelli, S., and Telesca, L., 2006. 2D Self-Potential Tomographies for Studying Groundwater Flows in the Varco d; Izzo landslide (Basilicata, southern Italy). J. Engineering Geology, 88: 274-286.

Crozier, M.J., 2010. Landslide Geomorphology: An Argument for Recognition, With Examples from New Zealand. Journal of Geomorphology, 120 (1-2): 3–15.

Chowdhury, R.N., 2010. Geotechnical Slope Analysis. CRC Press, Netherlands: 54p

Carpentier, S., Konz, M., Fischer, R., Anagnostopoulos, G., Meusburger, M., and Schoeck, K., 2012. Geophysical Imaging of Shallow Subsurface Topography and Its Implication for Shallow Landslide Susceptibility in the Urseren Valley Switzerland. Journal of Applied Geophysics, 83: 46-56

Daily, W., Ramirez, A., Binley, A. and LeBrecque, D., 2004. Electrical Resistance Tomography. Journal of The Leading Edge, 23: 5.

Emy, A dan Dwa, D.W, 2016. Analisa Pengaruh Kadar Air Terhadap Sifat Resistivitas dan Konduktivitas Limestone Daerah Gresik, Jawa Timur. Jurnal Fisika Batuan, 2(1): 1-5.

Gance, J., Malet, J.P., Supper, R., Sailhac, P., Ottowitz, D., and Jochum, B. 2016. Permanent Electrical Resistivity Measurements for Monitoring Water Circulation in Clayey Landslides. Journal of Applied Geophysics, 126: 98-115.

Gulla, G., Aceto, L., Antronico, L., Borrelli, L., Coscarelli, R., and Perri, F., 2018. A Smart Geotechnical Model in Emergency Conditions : A Case Study of a Medium-Deep Landslide in Southern Italy. Journal of Engineering Geology, 234: 138-152.

Kodoatie, R.J., 1996. Pengantar Hidrogeologi. Andi Offset, Yogyakarta, p.82.

Korup, O., Densmore, A.L. and Schlunegger, F., 2010. The Role of Landslides in Mountain Range Evolution. Journal of Geomorphology,120 (1-2): 77–90.

Loke, M.H., 2004. Res2Dinv ver. 3.54, Rapid 2D Resistivitas and IP Inversion Using the Least-Squares Method, Geotomo Software, Malaysia : p11-36.

Malamud, B.D., Turcotte, D. L., Guzzetti, F and Reichenbach, P., 2004. Landslide Inventories and Their Statistical Properties. Journal of Earth Surface Processes and Landforms, 29 (6): 687–711.

Mohammad, F., Mardiana, U., Yuniardi, Y., Firmansyah, Y., and Alfadli, K.M., 2016. Potensi Air Tanah Berdasarkan Resistivitas Batuan di Kelurahan Cangkorah, Kecamatan Batujajar, Kabupaten Bandung-Barat. Bulletin of Scientific Contribution FTG Unpad, 14 (2):141-152.

Silitonga,P .H., 1973. Peta Geologi Lembar Bandung, Jawa, Sekala 1:100.000. Pusat Penelitian dan Pengembangan Geologi, Bandung.

Sassa, K. and Canuti, P., 2009. Landslides Disaster Risk Reduction. Springer-Verlag Berlin Heidelberg: 31p

Solberg, I.L., Long, M., Baranwal, V.C., Gylland, A.S and Ronning, J.S., 2016. Geophysical and Geotechnical Studies of Geology and Sediment Properties at a Quick-Clay Landslide Site at Esp, Trondheim, Norway. Journal of Engineering Geology, 208: 214-230.

Santoso, B., Setianto, Hasanah, M.U., Wijatmoko, B., and Mohammad, I.H., 2018. Mitigation of Land Movement Using Self Potential Method In Ling-Anjung, Sumedang Regency. Eksakta, 19 (1) :32-39

Telford, W.M., Geldart, L.P., and Sheriff, R.E., 2004. Applied Geophysics 2 Edition. Cambridge University Press, Cambridge: 535-537.

Tsucida, T., Athapaththu, A.M.R.G., Kawabata, S., Kano, S., Hanaoka,T., and Yuri, A. 2014. Individual Landslide Hazard Assessment of Natural Valleys and Slopes Base on Geotechnical Investigation and Analysis 2014. Journal of Soil and Foundation, 54 (4): 806-819.

Uhlemann, S., Wilkinson, P.B., Chambers, J.E., Maurer, H., Merritt, A.J., Gunn, D.A., and Meldrum, P.I., 2015. Interpolation of Landslide Movements To Improve The Accuracy of 4D Geoelectrical Monitoring. Journal of Applied Geophysics,121: 93-105.

Varnes, D. J., 1978. Slope Movement Types and Processes In : Special Report 176: Landslides: Analysis and Control. Transportation and Road Research Board National Academy of Science Washington D C.

Wang, F., Okeke, A.C.U., Kogure, T., Sakai, T., Hayashi, H., 2018. Assessing the Internal Structure of Landslide Dams Subject to Possible Piping Erosion by Means of Microtremor Chain Array and Self-Potential Surveys. Journal of Engineering Geology, 234: 11-26.

Yin, Y., Li, B., Wang, W., Zhan, L., Xue, Q., Gao, Y., Zhang, N., Chen, H., Liu, T., and Li, A., 2016. Mechanism of the December 2015 Catastrophic Landslide at the Shenzhen Landfill and Controlling Geotechnical Risks of Urbanization. Journal of Engineering, 2: 230-249.

Van Bemmelen, R.W.,1949. The Geology of Indonesia Vol. 1 A. Government Printing Office, The Hauge, Amsterdam, 27p.

Zakaria, Z., Jihadi, L.H., Sabila, Z.S., and Oscar, A.W., 2015. Simulation of Slope Stability in the Dry and Rainy Season at Jatinangor, District of Sumedang, West Java. Proceedings of The 2nd International Conference Hanoigeo "Engineering Geology in Respond to Climate Change and Sustainable Development of Infrastructure", Hanoi, Vietnam, 27-28 November 2015, pp. 365-367



  • There are currently no refbacks.

Copyright (c) 2020 Budy Santoso

Indexing Site :
Google Scholar ISJD LIPI Portal Garuda IPI

Sinta(Science and Technology Index) Garuda(Garda Rujukan Digital Crossref

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


View JGSM Statistics